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SUMMARY

Excitatory control of inhibitory neurons is poorly un-
derstood due to the difficulty of studying synaptic
connectivity in vivo. We inferred such connectivity
through analysis of spike timing and validated this
inference using juxtacellular and optogenetic control
of presynaptic spikes in behavingmice.We observed
that neighboring CA1 neurons had stronger connec-
tions and that superficial pyramidal cells projected
more to deep interneurons. Connection probability
and strength were skewed, with a minority of highly
connected hubs. Divergent presynaptic connections
led to synchrony between interneurons. Synchrony
of convergent presynaptic inputs boosted postsyn-
aptic drive. Presynaptic firing frequency was read
out by postsynaptic neurons through short-term
depression and facilitation, with individual pyramidal
cells and interneurons displaying a diversity of spike
transmission filters. Additionally, spike transmission
was strongly modulated by prior spike timing of the
postsynaptic cell. These results bridge anatomical
structure with physiological function.

INTRODUCTION

The common currency of neural computation is the transmission

of action potentials from presynaptic to postsynaptic neurons.

Neural circuit computation relies upon action potential transmis-

sion, and thus changes in transmission efficacy are vital for infor-

mation storage. In particular, connectivity between excitatory

neurons and local interneurons (feedback inhibition, including

lateral inhibition) is believed to gate afferent drive (Fernández-

Ruiz et al., 2017; Milstein et al., 2015; Somogyi and Klausberger,

2005), control local synchrony (Stark et al., 2014), and dictate

competitive interactions within the excitatory population

(Buzsáki, 2010; Trouche et al., 2016). Therefore, a mechanistic

understanding of neural circuit operations requires not only
connectomic mapping of circuit elements, but also the elucida-

tion of the parameters that affect the dynamic properties of indi-

vidual synaptic connections that support circuit computation.

Synaptic connectivity and strength are usually assayed

through paired intracellular recording of the pre- and postsyn-

aptic cells, a method that is impractical in awake-behaving

animals, particularly in deep brain structures. An alternative,

albeit indirect, approach is to use in vivo multi-electrode extra-

cellular recordings, which provide the timing of spikes re-

corded in parallel from hundreds of neurons. With such data,

it has been suggested that synaptic properties can be

deduced from the reliability and precision of spiking in one

neuron in the milliseconds after a spike of another cell

(Ahissar et al., 1992; Constantinidis and Goldman-Rakic,

2002; Henze et al., 2002; Marshall et al., 2002; Perkel et al.,

1967; Toyama et al., 1981). However, to accurately detect

monosynaptic connections requires that pairwise interactions

be isolated from indirect polysynaptic drive, as well as from

ubiquitous common ‘‘third party’’ inputs, which have the po-

tential to synchronize neurons that lack direct synaptic

coupling (Ostojic et al., 2009). A reliable way to rule out the

possibility of third party coordination is to demonstrate that

postsynaptic spikes are causally related to the spiking of a sin-

gle presynaptic neuron.

To determine an accurate method for detecting synaptic con-

nections from spike timing data, we decoupled presynaptic

neurons from the ongoing network activity through single-cell

juxtacellular current injection or optogenetic stimulation of small

groups of cells. We focused on the strong excitatory-to-inhibi-

tory synapses in the CA1 region (Gulyás et al., 1993), as weak

connections are likely missed with this spike transmission-

based approach. First, we generated a ‘‘ground-truth’’ dataset

in which we identified monosynaptic pyramidal cell drive of

local interneurons and validated two models for detection of

such connections. This enabled us to identify monosynaptic

connections among nearly 30,000 pyramidal cell-interneuron

pairs recorded in behaving mice and rats and examine the func-

tional architecture and dynamics of the excitatory to inhibitory

circuit.

Using this approach, we uncovered the anatomical

organization and several dynamic properties of pyramidal
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Figure 1. Synaptic Interactions, Common

Drive, and Circuit Motifs Inferred from Spike

Train Correlations

(A) Circuit motifs hypothesized to result in short-

latency spike-spike correlations.

(B) Example wideband (0.1–6,000 Hz) extracellular

traces obtained from dorsal CA1 pyramidal layer.

Colored ticks represent spikes from single units

sorted offline. Pink shaded area is a putative

instance of monosynaptic spike transmission from

a pyramidal neuron (black tick) to an interneuron

(red tick).

(C) Meanwaveforms for the four units shown in (B).

(D) Autocorrelations (in color) and CCGs (in gray)

for the four units from (B) and (C). Dashed line

shows 0 ms lag from the reference spike. CCG

binned at 1 ms. Note that both pyramidal neurons

have positive (�1 ms) latency peaks in their pair-

wise CCGswith the interneurons (*), while the CCG

between the two interneurons has a peak at 0 ms

lag (**).

(E) Left: 4,000 randomly sampled traces (filtered at

0.3–6 kHz) aligned to the spike of the pyramidal

neuron (in black), with the spikes from the

postsynaptic interneuron (in red), from the pair

highlighted with the asterisk in (D). Right: high-

resolution CCG (0.1 ms bins) for the same pair.

Vertical scale bar is non-corrected probability.

(F) Left: 4,000 randomly sampled traces (filtered at

0.3–6 kHz), aligned to the spike of the interneuron

in yellow, with the spikes from the second inter-

neuron in red, from the pair highlighted with the

double asterisk in (D). Right: high-resolution CCG

(0.1 ms bins) for the same pair. Vertical scale bar is

non-corrected probability.
cell-interneuron connections. Key findings include elucidating

the space constant for connection strength, time constants for

presynaptic cooperativity and postsynaptic receptivity, and sup-

port for the role of common excitatory inputs in generating syn-

chrony among interneurons. Additionally, we found that a diver-

sity of short-term facilitation and short-term depression

dynamics were simultaneously expressed by different connec-

tions of single presynaptic and postsynaptic neurons. Given

that inhibition controls the dynamics of pyramidal cell activity,

these findings have important implications for the organization

and construction of cell assemblies (Buzsáki, 2010; Dupret

et al., 2013; Trouche et al., 2016).
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RESULTS

We obtained recordings of CA1 neuronal

ensembles from freely behaving and

awake/sleeping mice (n = 9) and rats

(n = 4) and awake head-fixed mice

(n = 8). Neurons were separated by type

(pyramidal cells versus interneurons; see

STAR Methods). Potential synaptic con-

nections between neuron pairs were

assessed by examining the short-latency

interactions between cell pairs using

spike train cross-correlograms (CCGs)
(Figures 1B–1F; see STAR Methods). In a dataset of >400,000

neuron pairs, we examined a total of 29,964 excitatory to inhib-

itory pairwise interactions and 8,602 interactions among inhibi-

tory cells.

Figure 1D illustrates short time-scale interactions for four

selected neurons, in which two pyramidal neurons (PYR1 and

PYR2) potentially excited the same two interneurons (INT1 and

INT2). This is evidenced by the short-latency delays between

peak firing from the reference spike of the pyramidal neuron

(time 0) and the putative interneuron, visible in the CCG

(�1–2 ms delay; Figures 1D and 1E). In contrast, the CCG

between the two interneurons showed a zero-centered peak



Figure 2. Single Pyramidal Neurons Discharge Postsynaptic Interneurons

(A) Left: schematic of the experiment for combined juxtacellular-extracellular recordings. Only six electrode sites are shown for clarity. Right: photomicrograph of

hybrid probe. The tip of the juxtacellular electrode (red arrow) is �50–100 mm from the closest electrode site on the silicon probe. Scale bar, 50 mm.

(B) Example juxtacellular stimulation of a pyramidal neuron. Top: histogram of delay times to first spike after stimulus onset. Bottom: raster of 963 trials. Dashed

line is stimulus onset (50 ms duration). The first spike of each trial is colored red.

(C) CCGs of 30 pyramidal to interneuron pairs demonstrating similarity in spike transmission for both spontaneous and juxtacellularly evoked presynaptic spikes

(all evoked spikes).

(D) Mean, baseline-corrected CCG for spontaneous (black) or juxtacellularly evoked presynaptic spikes (first spike only in red, all evoked spikes in orange).

Vertical scale bar is corrected probability.

(E) Left: schematic of recording with m-LED silicon probe. Right: photomicrograph of the silicon probe with three mLEDs illuminated. Scale bar, 15 mm.

(F) Example PSTH of spiking response to optogenetic stimulation of a ChR2-expressing pyramidal neuron.

(G) CCGs of 118 pairs demonstrating similarity in spike transmission for both spontaneous and optogenetically evoked presynaptic spikes.

(H) Mean, baseline-corrected CCGs for spontaneous (black) or optogenetically evoked (blue) presynaptic spikes. Vertical scale bar is corrected probability.

(I) Illustration of parameters used to define connections from CCGs. Significant connections were those in which the peak was above the confidence bounds

indicated by the dashed lines. Spike transmission probability defined by area in green (see STAR Methods).

(J) Receiver-operator characteristic curve for synapse classification, with the threshold for Pcausal shown by the black X for the optogenetic classifier. This Pcausal

was used to define the confidence bounds in (I) (see STAR Methods).

(legend continued on next page)
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(INT1–INT2 peak:�0ms, Figures 1D and 1F). This zero-centered

synchrony, sometimes referred to as ‘‘zero time’’ lag correlation

(Diba et al., 2014; Engel et al., 1991; Roelfsema et al., 1997), may

be due to the two interneurons sharing a common excitatory

drive (Figures 1A and 1D) or to interactions among the interneu-

rons. In a first set of experiments, we examined monosynaptic

drive for evoked spikes of presynaptic neurons and compared

this drive to that observed during spontaneous activity. We

then examined how such connections compared with, and

contributed to, zero-centered synchrony among interneurons.

Identification of Monosynaptic Spike Transmission from
Pyramidal Neurons to Interneurons
We used two methods to test the hypothesis that monosynaptic

connections from PYR to INT can be reliably detected from spike

timing. The goal of both approaches was to provide a compari-

son of spike transmission probabilities for evoked (experimen-

tally driven) and spontaneous (network driven) spikes.

In the first approach, we evoked action potentials in single pre-

synaptic PYRs using juxtacellular electrodes (Pinault, 1996),

while recording extracellular spikes of local INTs (�50–100 mm

estimated inter-somatic distance; Figure 2A). We used juxtacel-

lular current pulses to induce spikes in PYRs (Figure 2B; median

gain = 23.2 Hz, median percent increase: 470%, n = 18). The

juxtacellular stimulation protocol approached the limits (Doose

et al., 2016) of experimentally evoked spike-time precision in

PYRs in vivo (mean/median standard deviation of first spike

latency after pulse onset = 13.0 ms). To validate that evoked pre-

synaptic spikes were indeed decoupled from network drive, we

assessed the degree of synchrony between the evoked spikes

and the activity of other pyramidal cells. As compared to sponta-

neous spikes, evoked spikes were significantly less likely to

occur within ±2 ms of spikes of either other PYR presynaptic

to the same INT (p = 0.002, n = 26) or all other PYR (p = 0.03,

n = 18). As ±2 ms is the window of maximal presynaptic cooper-

ativity (see later in Figure 5), this demonstrates significant decou-

pling from the network on timescales relevant to presynaptic

cooperativity.

CCGs were computed independently for spontaneous and

evoked spikes (Figures 2C and 2D), and spike transmis-

sion probability was calculated as excess synchrony in the

0.8–2.8 ms bins above baseline co-modulation (green area, Fig-

ure 2I; see STAR Methods). To assess spike transmission prob-

ability following maximally decoupled spikes, we considered

only the first evoked spike after the stimulation onset. Transmis-

sion probabilities for spontaneous and first evoked spikes were

significantly correlated (r = 0.79, p < 1.11�6, n = 30, Figure 2K),

and the mean transmission probability for spontaneous spikes

did not differ from the first evoked spikes (sign test, p = 0.86,

n = 18, Figure S2B). Importantly, deviance in transmission prob-

ability for spontaneous versus first evoked spikes did not corre-

late with the mean time to the first evoked spike (r = 0.153,

p = 0.416, n= 30) or with the standard deviation of the time to
(K) Correlation of spike transmission probability for spontaneous spikes versus t

nected are shown in red, non-significant peaks for all excitatory to inhibitory CC

(L) Same as in (J) for optogenetic stimulation (connections in blue). For clarity, 32

(M) 1,754 monosynaptic connections identified in a dataset of 29,964 PYR/INT p

508 Neuron 96, 505–520, October 11, 2017
the first evoked spike (r = 0.151, p = 0.423, n = 30). This suggests

that the degree of decoupling of the presynaptic cell from the

network cannot explain the difference between transmission

probabilities for spontaneous versus evoked spikes. Finally, to

assess transmission probability during spontaneous decoupling

of presynaptic activity from identified convergent inputs, we

tested transmission efficacy for spikes in which the presynaptic

cell fired and other convergent inputs were silent within a ±2 ms

time window. Consistent with our evoked experiments, the spike

transmission probability for all spontaneous spikesmatched that

for the spontaneously decoupled spikes (sign test, p = 0.26,

n = 30), thus suggesting that the major part of the observed

CCG peak is indeed a pairwise effect. Combined, these results

support the conclusion that pyramidal cell-interneuron CCG

peaks reflect monosynaptic connections.

In our second approach, we used focal optogenetic stimula-

tion to increase the firing rate of small numbers of pyramidal cells

(Figure 2F; Figure S2C), effectively scaling up the experiment in

order to gain a more quantitative estimate of the distribution of

the pairwise interactions. To record and activate hippocampal

CA1 pyramidal neurons, we implanted mice expressing chan-

nelrhodopsin-2 under control of an excitatory neuron-specific

promoter (CaMKII::ChR2 mice; see STAR Methods) with four-

shank silicon probes equipped with 12 mLEDs (Figure 2E) (Kim

et al., 2016). Since the light sources in this device are inter-

mingled with the recording sites, sub-mW light power is sufficient

to activate small numbers of pyramidal cells confined to the

vicinity of the light from a single recording shank (Wu et al.,

2015) and, importantly, the activity of the light-modulated

neurons can be simultaneously monitored during stimulation

(Wu et al., 2015). We examined the CCGs of 224 optogenetically

excited PYR cells and 88 simultaneously recorded INT (yielding

954 potential connections, n = 4 mice) and identified 118

PYR-INT pairs (n = 94 PYR, n = 26 INT) with significant peaks

in the CCG (see STAR Methods). As we found with the juxtacel-

lular experiments, CCGs for these pairs were similar when con-

structed with optogenetically evoked spikes or spontaneous

spikes (Figures 2G and 2H), and the spike transmission probabil-

ities were highly correlated (Figure 2L; r = 0.85, p < 1.89�34). The

optogenetic stimulation was of insufficient magnitude to evoke

ripple-frequency oscillations in the LFP, requiring more than

�15–20 neurons (Stark et al., 2014). Nevertheless, coordinated

activity in this frequency range is observable as secondary peaks

in the PYR-INT CCGs (Figures 2G and 2H), reflecting interactions

between excitatory and inhibitory neurons within small local

circuits. Spike transmission was significantly higher during opto-

genetic stimulation as compared to baseline (Wilcoxon rank

sum, p < 9.0�30). This suggests that more than one optogeneti-

cally activated presynaptic pyramidal cell was driving the same

interneuron, possibly including optogenetically excited presyn-

aptic terminals of other pyramidal cells. When the number of

presynaptic neurons firing together in 2 ms was considered,

transmission probability was not different for spontaneous
hose evoked by juxtacellular current injection. Neuron pairs classified as con-

Gs in black.

non-significant points are not shown.

airs.



versus optogenetically evoked spikes (Figure S2D), suggesting

that presynaptic cooperativity could explain the gain in spike

transmission probability during optogenetic stimulation. The

data from both our juxtacellular and optogenetic experiments

thus support the hypothesis that pyramidal cell-interneuron

CCG peaks can be reliably used to identify monosynaptic

connections.

We used the spike transmission during juxtacellular current or

optogenetic stimulation as our ‘‘ground truth’’ data in deter-

mining synaptic connectivity. With this labeled data, we tested

the accuracy of two synapse detection algorithms applied to

spontaneous spiking activity. In our first approach, we consid-

ered the cross-correlation between the presynaptic and post-

synaptic cells. Under this framework, synaptic interactions

were assumed to produce excess synchrony above that

expected from lower frequency co-modulation induced by com-

mon network drive. The low-frequency network co-modulation

was dissociated from the high-frequency synaptic synchrony

by convolving the observedCCGwith a partially hollowGaussian

kernel (Stark and Abeles, 2009), and only pairs with significant

high-frequency synchrony (Figure 2I, ‘‘fast’’) were retained for

subsequent analysis. In addition to fast pairwise synchrony in

excess of slow co-modulation, we assumed that the synaptic

interaction must produce significant excess synchrony in the

causal direction, with the peak in the CCG at positive lags higher

than that observed at negative lags (Figure 2I, ‘‘causal’’). The

performance of a classifier defined by the fast and causal ele-

ments of the pairwise interaction was determined by its receiver

operating characteristic curve (Figure 2J), which showed a true

positive rate of 81.3% and a false positive rate of 2.1% at our

optimal performance threshold (Provost and Fawcett, 2001).

As an independent approach, we used a generalized linear

model that derives the expected spike transmission kernel while

explicitly modeling the origin of the network co-modulation (Pil-

low et al., 2008) by including regressors for multi-unit activity

and phasic modulation by ripple and theta oscillations. The algo-

rithms had strikingly similar detection accuracy and quantitative

agreement on the contribution of the single pre-synaptic input to

the increase in the post-synaptic firing rate (Figure S3). Since

both algorithms performed equally well, we used the simpler

and computationally more efficient convolution method to clas-

sify (see STAR Methods) a large set of potential connections in

29,964 PYR-INT pairs, yielding 1,754monosynaptic connections

(Figure 2M).

Divergent Monosynaptic Pyramidal Cell-Interneuron
Connections Contribute to Zero-Lag Interneuron-
Interneuron Synchrony
We next addressed the hypothesis that ‘‘zero lag’’ peaks in the

CCGs between pairs of interneurons (<1 ms; Figure 1F) reflect

a common drive of neuronal pairs from divergent presynaptic

neurons (Diba et al., 2014; Ostojic et al., 2009; Senzai and

Buzsáki, 2017). Such synchrony was not always exactly zero-

centered, possibly due to axonal conduction delays, and thus

we first aimed to determine whether such a situation could be

mistaken for monosynaptic drive. We compared CCGs for

PYR-INT and INT-INT pairs with different inter-somatic dis-

tances (by choosing cells recorded on different shanks of the
silicon probe; Figures 3A and 3B, n = 4 rats). PYR-INT pairs

with significant CCG peaks could be detected up to 600 mm

apart (Figures 3A and 3C, green), while INT-INT pairs with signif-

icant CCG peaks could be detected across all shanks placed in

the pyramidal layer (up to 1.4mmdistance; Figure 3C, black). For

PYR-INT pairs, inter-somatic distance strongly correlated with

the time of the peak in the cross correlation, even when regress-

ing out the influence of connection strength on peak timing

(partial r2 of distance and lag = 0.49, p < 10�5; Figure 3C). Simi-

larly, the peak delay between INT-INT increased with inter-so-

matic distance (partial r2 of distance and lag = 0.35, p = 10�5,

n = 4 rats; Figure 3C). Importantly, the distribution of the delays

to the CCG peak for connected PYR-INT pairs and synchronous

INT-INT pairs, at R200 mm (Figure 3D), showed that the two

peaks were distinct. These observations show that the timing

of the CCG peak can effectively disambiguate zero lag syn-

chrony between INT-INT pairs and the monosynaptic drive

seen between PYR-INT pairs.

To evaluate the potential contribution of local excitatory inputs

to the zero lag synchrony seen among interneurons, we first

assessed whether the observation of multiple convergent inputs

influences interneuron coordination. Highly synchronous inter-

neuron pairs are expected to have more spikes emitted at short

interspike intervals (ISIs). Therefore, we calculated the distribu-

tion of ISIs between spikes from two interneurons and compared

the observed distribution to a resampled dataset in which the

spike trains were shifted relative to one another (see STAR

Methods). In support of common excitatory inputs contributing

to zero-lag INT-INT synchrony, interneurons with more shared

presynaptic partners exhibited significantly, and proportionally,

more short pairwise ISIs (Figure 3E). To test for the ability of

interneurons to generate synchrony among themselves (Hu

et al., 2011), we stimulated single interneurons with a juxtacellu-

lar electrode (mean gain during stimulation: 59.1 Hz, SD 46.6 Hz,

n = 9 stimulated interneurons in three mice) while monitoring the

extracellular spiking of other local (�50–100 mm inter-somatic

distance) interneurons with a silicon probe. CCGs constructed

with spontaneously occurring juxtacellular spikes exhibited

significant zero-centered peaks, while CCGs constructed

with evoked spikes had no, or significantly, diminished, zero-

centered peaks (Figure 3F; Figure S4), suggesting that inter-

neuron-interneuron interactions alone may not be sufficient for

generating zero-lag synchrony.

The Spatial Convergence and Divergence of Pyramidal
Cell-Interneuron Connections Is Highly Skewed
Figure 4A illustrates the connectivity map of pyramidal cells and

interneurons recorded in a single session, showing that individ-

ual pyramidal neurons targeted multiple interneurons (Figure 4B)

and that multiple pyramidal cells converged on the same inter-

neuron (Figure 4C). The probability of finding a connection

decreased with increased distance along the septo-temporal

axis (Figure 4D), as expected, due to the increasing number of

potential targets in larger volumes. We observed a higher prob-

ability of connections from superficial pyramidal neurons onto

deep interneurons (Figure 4E). The magnitude of spike transmis-

sion probability between PYR-INT varied several orders of

magnitude and its distribution was skewed (Anderson-Darling
Neuron 96, 505–520, October 11, 2017 509



Figure 3. Monosynaptic Connectivity Can Be Dissociated from Syn-

chrony Induced by Convergent Input

(A) CCGs of example PYR-INT pairs recorded at different inter-somatic

distances. Distance is calculated based upon the presynaptic and post-

synaptic neuron being recorded on specific shanks of the silicon probe, with

200 mm inter-shank spacing. Axonal conduction delay produces a rightward

shift of the peak with increasing inter-somatic distance.
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test for normality p < 0.05; Figure 4F). We found a significant pos-

itive correlation (r = 0.33; p = 7.66�9, n = 784) between themagni-

tude of spike transmission probability and the density of

PYR-INT convergence for individual INT (Figure 4G). This sug-

gests that interneurons receiving more connections from local

PYR also tend to have apparently stronger connections with

local PYR cells. Stronger spike transmission may be explained

by properties of the synapse (i.e., larger conductance), postsyn-

aptic features (i.e., more depolarized restingmembrane potential

and/or lower threshold voltage), or a combination of these fac-

tors. Finally, we demonstrated that spike transmission probabil-

ity decreased with increased distance between PYR-INT pairs

(rank sum, same shank versus one shank away p = 2.92�17,

one shank away versus two shanks away, p = 6.0�6, correlation

coefficient of distance with spike transmission probability, p =

�0.19, p = 5.0�17; Figure 4H), which is not due to differences

in synchrony among local versus distant pyramidal neurons, as

pyramidal cells on the same shank, as compared to those re-

corded on separate shanks, were equally likely to fire at short la-

tency (2–5ms) ISIs (rank-sum test for excess synchrony p > 0.05;

see STAR Methods). Finally, we assessed the effect of brain

state on PYR-INT connection strength at different intersomatic

distances and found that distal pairs, as compared to pairs re-

corded on the same shank, had more of a decrease in spike

transmission probability during sleep as compared to wake

(Figure S4B).

Temporal Cooperativity of Pyramidal Neurons Enhances
Spike Transmission Probability
Synchronous spiking of a presynaptic population (in this case

two neurons) is expected to facilitate spike transmission due to

synaptic integration. First, we identified such synchronous

events and found that pyramidal neuron pairs that shared a post-

synaptic target were more likely to co-fire at short intervals

(<10ms), compared to those that did not have a shared postsyn-

aptic partner (Figure 5A). Though our synchrony measure

controls for firing rate (see STAR Methods), we also saw an in-

crease in short ISI synchrony when explicitly equalizing the rates

between the two groups (data not shown).

We next examined the statistics of the postsynaptic spiking at

times of high presynaptic synchrony (defined as two presynaptic
(B) CCGs of example interneuron-interneuron pairs recorded at different inter-

somatic distances, calculated as in (A). Note that the temporal shift with dis-

tance is less than that for the pairs in (A).

(C) The timing of CCG peaks in monosynaptic PYR-INT pairs and synchronous

INT-INT pairs have different slopes and y intercepts. Note that weak PYR-INT

pairs were excluded from the visualization, but not the calculation of the slope.

Horizontal jitter of points is for illustration only.

(D) Distribution of CCG peaks for all PYR-INT and INT-INT pairs for R200 mm

distance.

(E) Interneurons that share presynaptic pyramidal neuron inputs (green, blue,

and red) spikemore synchronously than those that do not (black). Note that the

magnitude of synchrony scales with the number of shared presynaptic pyra-

midal cells. Bars mark significance, Bonferonni corrected, Wilcoxon rank sum,

p < 0.0017.

(F) INT-INT CCGs for pairs in which one INT was recorded and stimulated with

the juxtacellular electrode, constructed with either spontaneous or evoked

spikes.



Figure 4. Anatomical Features of Pyramidal-Interneuron Con-

nections

(A) Connectivity map of an example recording session. Pyramidal cells

(triangles) and interneurons (disks) are superimposed on the recording sites of

the five-shank probe. Horizontal jitter of cell bodies within shanks is for illus-

tration purposes only. Note convergence of several pyramidal neurons onto

shared interneurons.

(B) Distribution of PYR-INT divergence.

(C) Distribution of PYR-INT convergence.
neurons spiking with an ISI of less than ±2 ms). For pairs with

strong summed transmission probabilities surrounding the

secondspike in a synchronousevent (timezero), thepostsynaptic

rate was increased (Figure 5B), suggesting that connected PYR-

INT pairs also receive temporally organized excitation, possibly in

combination with a synchronizing effect of feedback inhibition.

We next examined how the relative timing of presynaptic

spikes ofmultiple pyramidal neurons affected spike transmission

probability to a common postsynaptic target (Figure 5C). We

found that temporal proximity of spiking of convergent inputs

resulted in a robust gain in PYR-INT spike transmission probabil-

ity (rank sum, p < 10�11 up to 2.2 ms ISI common [n = 7,404]

versus independent [n = 15,600] triplets; Figure 5D) even above

what would be expected for the linear sum of themean transmis-

sion probability of the two presynaptic neurons (sign test,

observed > linear sum, p < 6.0�8 to 1 ms, Figure 5D; slope of

linear sum versus observed at 0.4 ms ISI = 1.11; see Figure S6).

Similarly, convergent inputs from two optogenetically activated

presynaptic pyramidal neurons significantly boosted transmis-

sion probability (rank sum, p < 1.1�4, from 0.8 to 3.4ms ISI, com-

mon [n = 919] versus independent [n = 873] triplets; Figure 5E).

Short-Term Facilitation and Depression Dynamics Are
Diverse and Specific to Individual Connections
The history of spiking activity in circuits is known tomodulate the

strength of synapses, and this process is usually referred to as

short-term plasticity (i.e., facilitation or depression) (Abbott

et al., 1997; Stevens and Wang, 1995; Zucker and Regehr,

2002). Although we did not record postsynaptic potentials,

changes in which are typically utilized in measures of short-

term plasticity (i.e., paired-pulse facilitation/depression), we

nevertheless sought to determine whether similar processes

are observed for spike transmission probability.

We analyzed the transmission probability for PYR-INT pairs as

a function of the ISIs of the presynaptic pyramidal cell (Figures 6A

and 6E; Figure S7). Data for each pair were fit with a classical

model of dynamic synaptic filters (Tsodyks et al., 1998; Tsodyks

andMarkram, 1997). We found that 357/1,768 neuron pairs were

fit with either the full model (n = 23) or the reduced models

consisting solely of either depression (n = 287 pairs; Figures

6B, 6C, and 6F) or facilitation (n = 64 pairs; Figures 6B, 6D, and

6F). Interestingly, somepairs hadmaximal transmissionprobabil-

ity at specific ISIs, which was not always captured by the most

parsimonious model (Figure 6F). Divergent pyramidal cells were

observed to make both facilitating and depressing connections
(D) Probability of PYR-INT connections as a function of intersomatic distance

along the septo-temporal axis.

(E) Probability of PYR-INT connections as a function of inter-somatic distance

along the radial (deep-superficial) axis. Positive distances correspond to the

case where the pyramidal neuron was more superficial, while negative dis-

tances indicate that the pyramidal neuron was deeper.

(F) Distribution of spike transmission probability between PYR-INT pairs.

(G) Spike transmission probability as a function of PYR-INT convergence. Only

within-shank connections are included (connection probability is the percent

of connected versus all recorded pyramidal neurons). Stronger PYR-INT

connections are associated with larger convergence.

(H) Distribution of connection strengths for increasing inter-somatic distances

along the septo-temporal axis.
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Figure 5. Presynaptic Cooperativity In-

creases Spike Transmission Probability

(A) Pyramidal neuron pairs that share a post-

synaptic target (green) synchronize more at short

ISIs than pairs lacking a common postsynaptic

target (gray).

(B) Mean CCGs between synchronous events for

pairs of convergent PYR and INT. Color code is

summed transmission probability for connections

to common interneuron.

(C) Schematic illustrating how spike transmission

probability was assessed after convergent

spiking.

(D) During spontaneous activity, spike trans-

mission is highest following temporally synchro-

nous spiking of pairs of pyramidal neurons for

which both are presynaptic (green), as compared

to pairs of pyramidal cells in which one is con-

nected and the other is not (gray) (shaded area is

SEM). Dashed line is the mean expected linear

summation of the transmission probabilities for the

two PYRs in the convergent case. Solid lines

below traces indicate ISIs with significant differ-

ences between the convergent and independent

case (black) or the convergent case and the

arithmetic mean indicated by the dashed line (red).

Wilcoxon rank sum test, p < 1.25�3.

(E) During optogenetically induced presynaptic

activity a similar gain through cooperativity was

observed, indicating that the synchrony of the two

presynaptic cells, and not hidden third parties,

explained the overall boost in spike transmission.

Shaded area is SEM.
with different postsynaptic targets (n = 30 pyramidal cells that

showed both facilitation and depression; Figure 6B). Further-

more, single postsynaptic interneurons were observed to have

both facilitating and depressing connections with different

convergent presynaptic pyramidal cells (n = 39 interneurons; Fig-

ure 6F). For example, Figure 6G shows a single postsynaptic

interneuron with 21 presynaptic inputs: 19 depressing, one facil-

itating, andonemixed.Both fast-spiking (FS) andnon-FS typesof

postsynaptic interneurons exhibited facilitation and depression

(Figures 6C, 6D, and 6H), though significantly more depressing

connections were made with FS postsynaptic interneurons

than with non-FS neurons (c2 test, P(c2 > 8.47) = 0.0145,

n = 336 pairs; Figure 6H). We observed a wide range of time con-

stants for both depression (Figure 6I) and facilitation (Figure 6J).

The depression time constant was significantly shorter for FS

postsynaptic interneurons, evenwhen accounting for differences

in transmission probability between FS and non-FS types

(ANCOVA, Lawley-Hotelling Trace = 18.58 p = 2.2�5, df = 284).
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Stronger connections had shorter

depression time constants (r = �0.82,

p = 1.8�70, n = 287; Figure 6K), while no

relationship was observed between

facilitation time constant and connection

strength (r = 0.14, p = 0.25, n = 64; Fig-

ure 6L). These data show that the expres-

sion of a specific short-term dynamic is
not restricted by the identity of the postsynaptic cell or the

short-term dynamic expressed by other connections of the

samepresynaptic or postsynaptic neuron. Thus, short-termplas-

ticity appears specific for individual synapses, not for neurons.

Prior Postsynaptic Spike Timing Modulates
Transmission Probability More Than Variations in
Instantaneous Rate
Given the profound influence of the spiking history of the presyn-

aptic cells and other neurons in the network, we next turned to

how the spiking history of the postsynaptic cell modulates spike

transmission. To examine the effect of postsynaptic excitability,

measured as firing rate, on transmission probability, we

measured the transmission probability during selected times

in which the postsynaptic neuron spiked at specific rates

(10–80 Hz) prior to presynaptic spiking (Figures 7A and 7B). For

baseline corrected CCGs, there was a small, but significant,

negative effect of rate on transmission probability (median slope



(legend on next page)
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of transmission probability/rate = –7.3�5 ; sign test different from

zero, p = 7.0�6; Figures 7C–7E), suggesting weaker additional

drive at higher rates.

We next examined whether the timing of the last postsynaptic

spike relative to a given presynaptic spike affected the probabil-

ity of spike transmission (Figure 7F). In contrast to the weak

effect of rate, the timing of the last postsynaptic spike strongly

affected the spike transmission probability of the next presynap-

tic spike, exhibiting clear refractoriness for ISIs less than 10 ms

and an enhancement of transmission that peaked at 24 ms (Fig-

ure 7G). The peak is likely due to the intrinsic properties of the

postsynaptic interneurons, as this boost in transmission proba-

bility was also observed when only optogenetically evoked post-

synaptic spikes in PV::ChR2 mice were considered (Figure 7G,

blue; n = 2 PV::ChR2 mice). The gain at 20–30 ms is consistent

with the known role for pyramidal cell-interneurons interactions

in driving gamma frequency oscillations (Buzsáki and Wang,

2012). These findings support the idea that the spike transmis-

sion probability measure is more related to the features of synap-

tic connections rather than network-controlled effects.

DISCUSSION

Inhibition plays an important role in coordinating the timing of

principal cell output andmodulating the integration of afferent in-

puts (Buzsáki, 1984; Isaacson and Scanziani, 2011). Excitatory

inputs contribute to the rate and timing of such inhibition. We

thus investigated how excitatory monosynaptic connectivity

between pyramidal cells and interneurons could be inferred

from reliable spike transmission from pre- to postsynaptic neu-

rons in behaving animals. This approach permitted fine-grained

analysis of the basic functional architecture and dynamics of hip-

pocampal excitatory-to-inhibitory local circuits (Figure 8).

Spike Cross-Correlations Can Reveal Monosynaptic
Spike Transmission between Pyramidal Cells and
Interneurons
Our findings provide support for the detection of monosynaptic

connectivity from spike timing relationships. We employed juxta-
Figure 6. Short-Term Facilitation and Depression Are Diverse and Spe

(A) An example pyramidal cell connected to two postsynaptic interneurons (diver

assessed at variable interspike intervals (ISIs) after a first spike emitted by the sa

(B) Top: an example connection that exhibited depression, as evidenced by lowe

connection that exhibited facilitation, as evidenced by higher spike transmissio

connected to the same presynaptic cell.

(C) The Z-scored spike transmission (color axis) at each presynaptic ISI (columns

the most parsimonious fit (rows sorted by tdepression). Data shown separately for

(D) Same as (C) for facilitating pairs.

(E) An example postsynaptic interneuron with three presynaptic pyramidal neuro

(F) Top and middle: example connections that exhibited depression and facilita

Arrow indicates a peak in the transmission probability at specific ISIs (�100 ms)

(G) Synaptic model fits for a single postsynaptic interneuron with 21 presynaptic

(H) Percent of FS and non-FS postsynaptic interneurons for which either the full

(I) Distribution of depression time constants for FS (solid line) and non-FS (dashed

(J) Distribution of facilitation time constants for FS (solid line) and non-FS (dashed

(K) Correlation of depression time constant with transmission probability. Filled ci

point (outlier) is not shown but is included in the statistical test.

(L) Correlation of facilitation time constant with transmission probability. Filled circ

points (outliers) are not shown but are included in the statistical test.
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cellular stimulation and optogenetic methods to decouple the

spikes of presynaptic pyramidal cells from background network

activity that could potentially contaminate estimates of pairwise

coupling. Using both stimulation techniques, we found that spike

transmission probability for evoked spikes was strongly corre-

lated with that observed for spontaneous activity. In the experi-

ments in which spikes were evoked with single-cell juxtacellular

stimulation, there was no difference in spike transmission when

comparing evoked to spontaneous spiking. These results sug-

gest that estimates of spike transmission probability can extract

monosynaptic, pairwise drive. As a note of caution, for brain

regions in which network-induced synchrony causes temporally

offset, high-frequency pairwise coordination, independent verifi-

cation of this detection method may be required.

As most experiments will not be able to causally confirm syn-

aptic connectivity, we used our ‘‘ground truth’’ data to validate

two synapse detection models. The first assumes that synaptic

interactions should induce directed, short-latency synchrony

that is additively in excess of the lower-frequency network

co-modulation of the presynaptic and postsynaptic neurons

(Stark and Abeles, 2009). The second method explicitly models

the network co-modulation by fitting the synaptic transfer kernel

while accounting for how the postsynaptic firing rate is modu-

lated by multi-unit activity and ripple and theta oscillations.

Both methods revealed �80% true positive rates and <5% false

positive rates. Existing statistical methods for synapse detection

provide a probability of observing excess synchrony beyond

some null distribution (Platkiewicz et al., 2017). With our labeled

data, we can convert these likelihoods into the statistic of inter-

est, the probability of synaptic connectivity. Importantly, future

researchers may use this dataset as a testbed for comparing

the effectiveness of various other statistical techniques that

seek to draw causal conclusions from correlated spiking.

Pyramidal Neuron Common Drive Contributes to
Synchrony among Interneurons
Pairs of interneurons often display so-called zero-lag synchrony,

detected as near zero-centered peaks (<1 ms) in the cross-cor-

relogram. Possible mechanisms generating such synchrony
cific to Connections, Not Single Cells

gence). The spike transmission probability of a second presynaptic spike was

me pyramidal cell.

r spike transmission probability at short presynaptic ISIs. Bottom: an example

n probability at short presynaptic ISIs. Both postsynaptic interneurons were

) is plotted for all neuronal pairs for which the depression-only model provided

FS and non-FS postsynaptic cells.

ns (convergence).

tion, respectively. Bottom: an example connection that exhibited depression.

, which is not captured by the parsimonious synaptic model.

pyramidal cell partners.

model, depression only, or facilitation only had the best fit.

line) postsynaptic interneurons for pairs which the fit was best for depression.

line) postsynaptic interneurons for pairs which the fit was best for facilitation.

rcles are FS, and open circles are non-FS postsynaptic interneurons. One data

les are FS, and open circles are non-FS postsynaptic interneurons. Three data



Figure 7. Postsynaptic Interneuron Spike

Timing Affects Spike Transmission More

Than Rate

(A) Schematic of analysis for (B)–(E) examining

effect of postsynaptic rate on transmission prob-

ability.

(B) Top: CCGs from an example pair for which the

firing rate of the postsynaptic neuron during the

preceding 200mswas 10–80 Hz. Bottom: same as

in (B) but with baseline correction applied. Red

lines are baseline (see STAR Methods).

(C) Transmission probability versus postsynaptic

rate for the example pair in (B).

(D) Distribution of baseline corrected slopes (as

shown in C) for the population (sign test, p = 7.0�8,

n = 621).

(E) Distribution of baseline corrected transmission

probabilities at each postsynaptic rate for all

neurons (n = 621). Vertical dashed lines are mean

transmission probability for that postsynaptic rate.

(F) Schematic of analysis for assessing the effect

of the interval of the last postsynaptic spike prior to

the presynaptic spike on the transmission proba-

bility.

(G) Gain in transmission probability at different ISIs

for postsynaptic spikes preceding the presynaptic

spike for spontaneous (green) and optogenetically

induced postsynaptic spikes (blue; n = 2 PV::ChR2

mice). Horizontal lines denote significant differ-

ence from zero Wilcoxon paired sign test p <

0.00125. Dashed line at 24 ms denotes the ISI with

the greatest boost in transmission efficacy.

Shaded area is SEM.
include shared excitatory inputs (Diba et al., 2014; Senzai and

Buzsáki, 2017) and synaptic or gap junction coupling between

interneurons (Mancilla et al., 2007; Traub et al., 2001). Here,

we observe that interneurons that share many presynaptic part-

ners spike together more often at short ISIs as compared to pairs

which share fewer or no presynaptic partners (Figure 3). This

lends experimental support for the involvement of shared excit-
N

atory drive (Butler and Taube, 2017; Diba

et al., 2014; Eggermont, 1992; Jackson

et al., 2003; Kreiter and Singer, 1996;

Nowak et al., 1995; Peyrache et al.,

2015; Schwarz and Bolz, 1991; Senzai

and Buzsáki, 2017; Swadlow et al.,

1998). Additionally, we observed that jux-

tacellular stimulation of single interneu-

rons strongly reduced their synchrony

with other interneurons (Figure 3). These

findings demonstrate that common excit-

atory drive is an important factor in initi-

ating interneuron synchrony, although

other mechanisms, such as synaptic

and gap junction coupling between inter-

neurons, should not be dismissed (Galar-

reta and Hestrin, 2001).

Importantly, we demonstrate that

such common excitatory drive/gap junc-
tion coupling can be dissociated from monosynaptic connec-

tions. The peak delay between the spikes of the presynaptic

pyramidal cell and interneuron pairs was 0.8–2.8 ms, while

the peak synchrony among interneurons tended to occur

with less than 1 ms delay, and there was little overlap in the

delay distributions. For both PYR-INT and INT-INT pairs, tem-

poral delays correlated with inter-somatic distance, but, at a
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Figure 8. Organization and Dynamics of

Pyramidal Cell-Interneuron Monosynaptic

Connections

(A) Single pyramidal neurons evoke spikes in in-

terneurons at short latencies. Convergent inputs

boost transmission probability.

(B) CA1 pyramidal neurons synchronize local in-

terneurons.

(C) Connection strengths decrease with inter-so-

matic distance.

(D) Monosynaptic transmission probability ex-

hibits activity-dependent, short-term facilitation

and depression. Left: single pyramidal neurons

make both depressing and facilitating connec-

tions. Right: single interneurons receive both

depressing and facilitating connections.

(E) Spike transmission probability is increased if

the interval since the last postsynaptic spike is in

the gamma frequency range.
given distance, the peak time of the INT-INT synchrony was

usually 1 ms shorter than the peak time of the monosynaptic

PYR-INT peak. This delay difference likely corresponds to

the additional charge time of the interneuron membrane from

the EPSP onset to spike (Fricker and Miles, 2000). Together,

these results suggest that spike transmission from pyramidal

cells to interneurons can be dissociated from other forms of

temporal coordination, so long as the distance between neu-

rons is known.
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Architecture of the Excitatory to
Inhibitory Circuit
To elucidate quantitative features of the

pyramidal cell-interneuron circuit, we

grouped together the numerous inter-

neuron types within CA1 (Klausberger

and Somogyi, 2008), with the exception

of optogenetically identified PV+ neurons.

In general, the excitatory drivewas local

with most connections confined to

<200 mm inter-somatic distance (Figure 4)

(Csicsvari et al., 1998). This may be

explained, in part, by the fact that the

CA1 pyramidal layer forms a 2D sheet, re-

sulting in the number of potential targets

increasing with distance. For ‘‘fan-out’’

pyramidal-cell interneuron connections,

the distribution of connection probability

was strongly skewed. While most pyrami-

dal cells were observed to have had zero

or one interneuron partner, a small minor-

ity hadmore than five. Spike transmission

probability also decreased with distance

(Figure 4). This finding suggests that the

activity of single pyramidal cells can be

isolated by lateral inhibition because local

interneurons are more strongly recruited

than distant ones. This arrangement could

explain why pyramidal cells in close prox-
imity do not represent overlapping spaces within an environment

(Redishet al., 2001). In addition to the septo-temporal distanceef-

fects, we have shown that superficial CA1 pyramidal neurons are

more effective at discharging interneurons than those in the deep

sublayer, supporting previous observations in a small subset of

PV+ interneurons (Lee et al., 2014). Such asymmetric organization

of inhibition may assist in segregating different streams of infor-

mation originating from themedial versus lateral entorhinal cortex

and entering distinct CA1 sublayers (Masurkar et al., 2017).



We also found a skewed distribution in the number of presyn-

aptic partners converging onto a postsynaptic interneuron (‘‘fan-

in’’ connections). While the majority of interneurons had only a

few local pyramidal cell partners, a subset of interneurons had

several dozen (Figure 4). As assessed by spike transmission

probability, the distribution of connection strengths between

pyramidal cell-interneuron pairs was also strongly skewed and

depended on brain state (awake versus sleep states). The overall

stronger spike transmission in the waking state, compared to

sleep, can be due to altered firing patterns and/or the contribu-

tion of subcortical neurotransmitters (Hasselmo, 2006). The

mechanisms that tonically affect spike transmission warrant

further studies. Importantly, the distribution of spike transmis-

sion strength was not random in anatomical space because

there was a reliable correlation between connection probability

and spike transmission probability. These observations imply

that interneurons that lie at the right end of a continuum of syn-

aptic strength distribution also havemore local presynaptic part-

ners. Such an organization implies that a subset of interneurons

is constantly excited by many pyramidal cells, thus providing

continuous inhibition, whereas interneurons at the left end of

the distribution can be controlled by unique patterns of pyrami-

dal cell activity, possibly enabling tailored inhibitory control.

In principle, several different models can account for the

above findings. Anatomical studies have shown that PV+ cells

have larger dendritic trees and receive far more excitatory inputs

than other interneuron types (Gulyás et al., 1999). Therefore, one

option is that the observed heterogeneity in excitatory conver-

gence was due to sampling multiple types of interneuron (Klaus-

berger and Somogyi, 2008). However, this is unlikely given that

the number of presynaptic partners forms a similarly skewed dis-

tribution for both FS interneurons (such as the majority of PV+

cells) and non-FS clusters in the larger dataset (Figure S5).

One might also argue that the detection of interneurons with

few presynaptic partners simply reflects a sampling problem or

could indicate that these interneurons receive disproportionally

more inputs from more distant or extra-CA1 cells. While our ex-

periments cannot exclude these possibilities, the correlation be-

tween cell body proximity and synaptic strength weighs against

this argument, at least within the CA1 region. Alternatively,

distinct motifs (Song et al., 2005), combined with lognormal rules

of connection strength distribution (Mizuseki and Buzsáki, 2013),

might form the backbone of local neuronal communication. In

support of this view, previous findings have shown that both

the firing rates and sequential activation patterns of CA1 pyrami-

dal cells and interneurons are correlated during spontaneous

states and optogenetic activation (Stark et al., 2015).

Presynaptic Cooperativity Enhances Spike
Transmission Probability
Pyramidal neurons in CA1 temporally organize into assemblies

(Harris et al., 2003), whose expression is hypothesized to involve

competition between orthogonally tuned assemblies via lateral

inhibition (Buzsáki, 2010). The limited number of inhibitory neu-

rons relative to pyramidal cells suggests that individual interneu-

rons are shared by subsets of the pyramidal neuron population

dependent upon their needs at a given time (Dupret et al.,

2013). We found that temporally proximal spiking of pyramidal
neurons, as occurs during assembly activation, enhances spike

transmission probability. Such enhancement is also observed for

juxtacellularly and optogenetically evoked presynaptic spikes,

suggesting that network driven increased excitability of the post-

synaptic interneuron is unlikely to make a major contribution to

this effect. However, we did find that near-synchronous spiking

of pyramidal neuron pairs (<2 ms interspike intervals) occurred

when their postsynaptic targets had a higher firing rate and

that pyramidal neuron pairs, which target common postsynaptic

interneurons, fire together more often than those with no shared

targets. This increase in pyramidal cell synchrony may reflect a

synchronizing effect of recurrent inhibition (Cobb et al., 1995),

though excitatory inputs from CA3 pyramidal cells may also

play a role. Such recurrent interactions may underlie the propen-

sity of CA1 circuits to generate ripple oscillations in response to

transient excitation (Stark et al., 2014). Overall, these observa-

tions suggest that a change in synaptic strength between pyra-

midal cells and interneurons, in particular via the relative timing

of multiple pyramidal neurons, can effectively reconfigure CA1

circuits and potentially pyramidal neuron assemblies.

Activity Dependence of Spike Transmission Probability
Depends upon Presynaptic Spike History
A critical component of circuit dynamics and computation is the

short-term plasticity of excitatory synaptic transmission (Abbott

et al., 1997; Stevens andWang, 1995; Zucker and Regehr, 2002),

including from pyramidal cells to interneurons in CA1 (Ali et al.,

1998; Losonczy et al., 2002). Due to the difficulty in obtaining

recordings of monosynaptic EPSPs in vivo, the majority of the

supporting data in this field has been obtained in vitro (but see

Pala and Petersen, 2015). Such experiments are necessarily per-

formed under artificial conditions, such as elevated extracellular

Ca2+ concentration, which are known to critically affect synaptic

transmission. Furthermore, most studies have utilized stimulus

patterns, which do not have the same statistics as in vivo spike

trains. We thus investigated the short-term plasticity of pyrami-

dal cell-interneuron connections in vivo, using spike transmis-

sion probability as a metric. The mechanisms underlying short-

term plasticity of transmission probability likely include those

typically associated with short-term plasticity of synaptic trans-

mission (Zucker and Regehr, 2002). However, other factors

may also be involved, such as conduction failures and level of

presynaptic cooperativity, as well as refractoriness and reso-

nance of the postsynaptic neuron (Figure 7).

We found that the relationship between presynaptic interspike

interval and transmissionprobabilitywasmorecomplex thanpre-

dicted by in vitro data. A fraction of single pyramidal neurons

made a depressing connection with one interneuron and a facil-

itating connection with another, as described in the neocortex

in vitro (Markram et al., 1998; Reyes et al., 1998). However, we

additionally found that the expression of facilitation or depression

is not dependent upon the identity of the postsynaptic neuron, as

has been suggested previously (Ali et al., 1998), because the di-

rection of short-term plasticity can vary even between different

connections of the same postsynaptic interneuron. Additionally,

many of the connections we observed had dynamics that were

more complex than facilitation or depression. This included ex-

amples of connections that had ‘‘preferred’’ interspike intervals,
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some correlating to the resonant properties of some interneurons

as well as the timescales of hippocampal population rhythms.

The role of postsynaptic resonance is supported by our finding

that transmission probability is highest for specific postsynaptic

ISIs (Figure 7), which are in the temporal range of spiking reso-

nance observed in interneurons recorded in vitro (Beatty et al.,

2015; Pike et al., 2000). Overall, our findings indicate that short-

term plasticity is synapse specific rather than neuron specific

and that frequency filtering of spike transmission can be ex-

ploited for tuning network dynamics.

Short-term plasticity may play an important role in hippocam-

pal circuit operations, including routing excitatory inputs (Abbott

et al., 1997), shifting somatic/proximal dendritic inhibition to

distal dendritic inhibition within place fields (Fernández-Ruiz

et al., 2017; Pouille and Scanziani, 2004), and redistribution of

interneuron membership in cell assemblies during learning (Du-

pret et al., 2013; Trouche et al., 2016). In this way, interneurons

could provide enhanced inhibition required to facilitate the tem-

poral synchronization of pyramidal cells and maintain the stabil-

ity of currently active assemblies while suppressing competing

ones. Transient interneuron recruitment may be critical to orga-

nizing the cell assembly sequences that underlie numerous

cognitive functions. In general, plastic changes in the engage-

ment of inhibitory feedback circuitry enable the dynamic regula-

tion of excitability in cortical microcircuits. The present study

provides a novel and comprehensive understanding of the

short-term dynamics of monosynaptic connections between

pyramidal neurons and interneurons in vivo.
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Monolithically integrated mLEDs on silicon neural probes for high-resolution

optogenetic studies in behaving animals. Neuron 88, 1136–1148.

Zucker, R.S., and Regehr, W.G. (2002). Short-term synaptic plasticity. Annu.

Rev. Physiol. 64, 355–405.

http://refhub.elsevier.com/S0896-6273(17)30902-9/sref55
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref55
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref56
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref56
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref57
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref57
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref57
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref57
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref58
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref58
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref58
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref59
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref59
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref59
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref60
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref60
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref60
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref61
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref61
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref61
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref62
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref62
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref62
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref63
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref63
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref64
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref64
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref64
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref65
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref65
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref66
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref66
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref66
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref67
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref67
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref67
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref68
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref68
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref68
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref69
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref69
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref70
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref70
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref70
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref71
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref71
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref72
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref72
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref72
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref72
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref73
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref73
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref73
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref73
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref74
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref74
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref74
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref75
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref75
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref76
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref76
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref76
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref77
http://refhub.elsevier.com/S0896-6273(17)30902-9/sref77


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Dental Adhesive Kerr Dental Optibond

Dental Resin Dentsply Triad-Gel

Experimental Models: Organisms/Strains

CaMKII-Cre mice https://www.jax.org 005359; RRID: IMSR_JAX:005359

Parvalbumin-Cre mice https://www.jax.org 008069; RRID: IMSR_JAX:008069

Ai32 Mice https://www.jax.org 012569; RRID: IMSR_JAX:012569

Software and Algorithms

MATLAB 2016b MathWorks http://www.mathworks.com

Klustakwik Harris et al., 2000 http://klustakwik.sourceforge.net/

Kilosort Pachitariu et al., 2016 https://github.com/cortex-lab/KiloSort

Neurosuite Hazan et al., 2006 http://neurosuite.sourceforge.net

FMA Toolbox Michael Zugaro, College de France http://fmatoolbox.sourceforge.net

Density-based clustering Yarpiz http://yarpiz.com/255/ypml110-dbscan-clustering

Dimensionality reduction toolbox Laurens van der Maaten https://lvdmaaten.github.io/drtoolbox/

Recording and online analysis software Cambridge Electronic Design Spike2

Recording software Intan Technologies Rhythm

Other

mLED Silicon Probes Wu et al., 2015 N/A

RHD2000 USB Interface Board Intan Technologies C3100

32 Channel Digital Amplifier Intan Technologies C3314

64 Channel Digital Amplifier Intan Technologies C3315

Power1401 Microprocessor Cambridge Electronic Design Power1401-A3
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gyorgy

Buzsaki (Gyorgy.Buzsaki@nyumc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All protocols were approved by the Institutional Animal Care and Use Committee of New York University.

CaMKII::ChR2 mice are the F1 generation of homozygous CaMKII-Cre (005359; RRID: IMSR_JAX:005359; https://www.jax.org)

crossed with homozygous Ai32 mice (012569; RRID: IMSR_JAX:012569; https://www.jax.org). Expression of channelrhodopsin-2

(h134r) is restricted to pyramidal neurons (Stark et al., 2012).

PV::ChR2 mice are the F1 generation of homozygous PV-Cre (008069; RRID: IMSR_JAX:008069; https://www.jax.org) crossed

with homozygous Ai32 mice (012569; RRID: IMSR_JAX:012569; https://www.jax.org). Expression of channelrhodopsin-2 (h134r)

is restricted to parvalbumin expressing neurons (Stark et al., 2012).

For both strains, male and female mice aged 6-12 months were used for all experiments.

METHOD DETAILS

Juxtacellular/Extracellular Recording in Awake Head-Fixed Mice
Mice (N = 8) were implanted with titanium head plates (Guo et al., 2014). A 50 mm stainless steel ground wire was implanted between

the skull and dura over the cerebellum. A �200 mm diameter craniotomy was made and the dura was removed over dorsal
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hippocampus (mm from bregma: �1.75, lateral 1.75). The craniotomy was covered with Kwik-Sil (World Precision Instruments) until

the day of recording. Mice were habituated to head fixation over one week, and were allowed to run on top of a 15 cm diameter wheel

during fixation. On the day of recording, the Kwik-Sil was removed, and the combined juxtacellular electrode – silicon probe (glass

electrode pulled from 1mmOD0.7mm ID borosilicate glass, TW100F-4,WPI; silicon probewas either a A1x32-Poly2 or A1x32-Poly3

(NeuroNexus) affixed with light cure epoxy (Norland Products Inc) or dental acrylic) was lowered 1 mm to the ventral cortex overlying

CA1 using a 3-axis roboticmanipulator (SutterMP-285) and left in place for 20-30minutes to allow the tissue to relax. Electrodeswere

then lowered in 20 mm steps until sharp-wave ripple oscillations could be observed, at which point the advancement was slowed to

5 mm steps until a cell was encountered. Pulses of 50-100 ms,�1-10 nA were applied either at a regular 1 Hz, or at irregular intervals

randomly jittered from trial to trial from 0.5-1.5 or 1.5-2.5 s, until spikes were elicited in the juxtacellularly recorded neuron, at which

point stimulation was continued until at least 1000 spikes were elicited. Spikes which occurred during the stimulus were considered

as evoked, and those which occurred at all other times were considered as spontaneous.

Extracellular Recordings and Cell-Type-Specific Optogenetic Manipulation in Freely Behaving Mice
Thirty-two channel silicon probes (20 mm intersite spacing) with integrated mLEDs (Kim et al., 2016; Wu et al., 2015), or 64 channel

silicon probes with diode-coupled optic fibers affixed to the shanks (Stark et al., 2012), were implanted in 6-12 month old

CaMKII::ChR2 (N = 4) or PV::ChR2 mice (N = 5). Stimulation protocols were programmed via a Power1401 microprocessor

(Cambridge Electronic Design), controlling mLEDs directly, or laser diodes through a constant current source (Thorlabs Inc). Record-

ings lasted > 3 hours, while mice freely behaved in their home cage.We stimulatedwith 100ms half sine waves, 50 and 100ms square

pulses, with random inter-stimulus interval (minimum time of 500 ms, maximum 6000 ms).

Data Acquisition
Juxtacellular signals were acquired with an IR-183 amplifier (Cygnus; http://www.cygnustech.com), then filtered (0.01 Hz-6 kHz),

digitized (20 or 30 kHz) and recorded using an Intan RHD2000 system (Intan Technologies LLC). Extracellular signals were recorded

directly with the same RHD2000 system using the same parameters.

Spike Sorting
Isolating spike waveforms from nearby neuronal sources is a known challenge for extracellular recordings. Waveform feature based

clustering prohibits the detection of spikes emitted from two neurons within 1.2 ms. Template-based clustering algorithms partially

solves this issue, and for this reason we used Kilosort (Pachitariu et al., 2016), to extract and classify waveforms from the broadband

(20 or 30 kHz sampling) signal recorded from mouse CA1. We systematically defined many more clusters than the number of ex-

pected recordable neurons (4-16 times the number of recording channels) and merged units according to similar waveforms and

common refractoriness. Free parameters used for automated sorting are listed below:
ops.Nfilt (4 to 16) * numberChannels

ops.nt0 32

ops.whitening ‘full’

ops.nSkipCov 1

ops.whiteningRange 32

ops.criterionNoiseChannels 0 to 0.1

ops.Nrank 3

ops.nfullpasses 6

ops.maxFR 20000

ops.fshigh 300

ops.ntbuff 64

ops.scaleproc 200

ops.Th [4 10 10]

ops.lam [5 20 20]

ops.nannealpasses 4

ops.momentum 1./[20 800]

ops.shuffle_clusters 1

ops.mergeT 0.1

ops.splitT 0.1

ops.initialize ‘no’

ops.spkTh 0.25
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ops.loc_range [3 1]

ops.long_range [30 6]

ops.maskMaxChannels 5

ops.crit 0.65

ops.nFiltMax 10000
Previously published units from the rat were extracted using KlustaKwik which is a non-template basedmethod (Harris et al., 2000;

Mizuseki et al., 2009). A subset of spiking data from themousewas extracted with both spike sorting algorithms (Kilosort versus Klus-

takwik) and qualitatively comparable results were found for estimating the presence/absence of a synapse (data not shown) likely due

to the fact that the peak of the synaptic synchrony (1.5 �2.5 ms) falls outside of the spike shadowing window (�0.6 - +0.6 ms).

Cell Classification and Radial Distance Estimation
Cell types were classified according to: mean firing rate, mode inter-spike interval, burstiness, and spike asymmetry (Sirota et al.,

2008). Burstiness was the proportion of spikes with < 6 ms ISI divided by baseline rate, calculated as the mean number of spikes

with ISIs 50-100 ms apart. The data were z-scored and mapped to a 3 dimensional sub-space using t-SNE (perplexity = 30, number

of iterations = 500). Following this dimensionality reduction, grouping was achieved via the density-based spatial clustering of appli-

cations with noise (DBSCAN) algorithm with radius ε = 5 and the minimum neighborhood size 5. Under a wide range of parameters, a

fast-spiking cluster always emerged, however, the current values were chosen to disambiguate a second class of interneuron. The

chosen protocol also split the pyramidal population, which is known to be heterogeneous. Because pyramidal cell diversity was not

the focus of the present work, the pyramidal populations were re-merged. A subset of the recordings were done in PV::ChR2 mice in

which parvalbumin positive interneurons could be driven with light. In these mice (N = 5), the fast-spiking interneuron group (N = 18)

showed significantly more light modulation than the non-FS cluster (N = 38) (Figure S1C). The three neuronal groups were also phys-

iologically confirmed by identifyingmono-synaptic connections from the pyramidal cluster to the two interneuron clusters (Figure S1).

The position of the unit on the radial axis (dorsal to ventral) was taken as the recording site with the largest amplitude, non-filtered

waveform. This was referred to the center of the pyramidal cell layer which was defined by the recording site with the largest ripple

amplitude and non-negative sharp-wave deflections (Mizuseki et al., 2011).

Optogenetic Modulation
To determine whether a unit was light modulated two criteria were required, 1) statistically significant increase in firing, and 2) an in-

crease in firing rate > 50% of the spontaneous rate. To test for significant rate changes, the number of spikes emitted during each

pulse was tabulated and compared to the number emitted during the same interval within two seconds prior to light delivery. These

counts were tested using a Wilcoxon ranksum non-parametric test of means and only units with highly significant (p < 10�10) firing

rate increases were retained. These stringent methods were used to maximize decoupling of the presynaptic neuron from the back-

ground network activity.

Validation of Synapse Detection and Connection Strength Estimation Using Baseline Corrected Cross-Correlation
First, only light-modulated pyramidal cells that emitted > 1000 spikes during stimulation were considered. For presynaptic spikes

emitted during light stimulation, cross-correlations (0.4 ms binning) were generated with the spike trains from each interneuron.

To generate true positive labels, two criteria were required, 1) the peak in the CCG needed to exceed that from the slowly co-modu-

lated baseline, and 2) the peak in the causal direction (positive lags) needed to be significantly larger than the largest peak in the anti-

causal direction (negative lags). To generate the lower frequency baseline, lslow, the observed CCG was convolved with a ‘‘partially

hollow’’ Gaussian kernel (Stark and Abeles, 2009), with a standard deviation of 10ms, with a hollow fraction of 60%. The probability of

obtaining an observed (or higher) synchrony count in the mth time lag of the observed CCG (0.8 to 2.8ms), given the expected, low

frequency baseline rate lslow(m) in the same bin was estimated using the Poisson distribution (Abeles, 1982; Stark and Abeles, 2009)

with a continuity correction,

Pfastðn or more j lslowðmÞÞ= 1�
Xn�1

x =0

e�lslowðmÞlslowðmÞx
x!

� :5 � e�lslowðmÞlslowðmÞn
n!

The probability of obtaining the observed (or higher) synchrony count in the positivemth time lag of the observed CCG (0.8 – 2.8ms),

higher than the maximum lanticausal (-m) at a negative time lag from �2.0 to 0 ms, was similarly estimated using the Poisson distribu-

tion with a continuity correction,

Pcausalðn or more j lanticausalð�mÞÞ= 1�
Xn�1

x = 0

e�lanticausalð�mÞlanticausalð�mÞx
x!

� 0:5 � e�lanticausalð�mÞlanticausalð�mÞn
n!
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During stimulations, connections were labeled as synapses if both Pfast and Pcausal were < 0.01. To unambiguously label non-con-

nected pairs, both Pfast and Pcausal were required to be > 0.1.

For spontaneous spikes emitted outside of stimulation windows, Pcausal and Pfast were calculated at the peak CCG count observed

at lags between 0.8 – 2.8ms. Only pairs with Pfast < 0.001 were considered. Pcausal was then varied as a threshold for synapse clas-

sification in the receiver operator characteristic analysis using the experimentally labeled connections as the ‘‘ground truth’’ tags. The

optimal operating point (Pcausal = 0.0026) was calculated using the MATLAB R2016b function perfcurve.

The synaptic strength was estimated as the excess in causal spike transmission probability from that expected given lslow. There-

fore, the spike transmission probability after n presynaptic spikes was defined as

spike transmission probability=
X2:8ms

m= 0:8ms

�
CCGðmÞobserved � lslowðmÞ��n

GLM Methods
Since the convolution technique (Stark and Abeles, 2009) is agnostic to the source of slow-timescale synchrony, it was possible that

the synchrony captured could be influenced by the spiking-history of the post-synaptic neuron.Wewere also interested in howmuch

of the slow-timescale modulation could be explained by known sources of modulation. Thus, we developed a complementary pair-

wise GLM (Harris et al., 2003; Pillow et al., 2008) to capture fast timescale synchrony between putative PYR-INT pairs.

The GLM was used to predict the time-varying hazard l of observing a spike in the post-synaptic neuron according to an inhomo-

geneous Poisson process, as a function of a number of known time-varying regressors RrðQÞ (Figure S3):

lt =
YNR

r = 1

Rr;tðQÞ

Where Q are the parameters corresponding to each regressor. Each regressor was of an exponential form. The prediction was eval-

uated according to the negative log-likelihood of observing the post-synaptic spike train given the time-varying hazard, assuming an

inhomogeneous Poisson process:

lðS2 jQÞ= �
XT
t = 0

lt +
X
s˛S

S2t,logðltÞ

Parameters were fit by minimizing the negative log-likelihood using MATLAB R2016’s fmincon routine.

To remain agnostic to the exact form of the time-varying transmission probability from the pre- to the postsynaptic neuron, we fit a

piece-wise function (Figure S3J) with a weight corresponding to each bin (Dt = 0:008ms; +/� 0.016ms; 40 weights). The center bin

was not estimated due to concerns about spike shadowing. The contribution of the presynaptic spike train S1 was defined by:

Rpre = expðS1 � KpreÞ
Where Kpre is the estimated transmission kernel. To decrease the computational run time we calculated efficient gradient calculation

routines, taking advantage of the fact that the convolution by one-hot vectors (since ðdK=dkiÞ= dðt � iDtÞ, the Dirac delta function) are
equivalent to time-shifts corresponding to the position of the time bin i. This approach allowed us to directly compare the form of the

convolution and GLM obtained kernels (Figure S3).

We used the same approach to capture the influence of the post-synaptic cells own spiking history:

Rpost = expðS2 � KpostÞ
WhereKpost is the fitted post-history kernel. Since the post-kernel must be symmetric, the first half (20) kernel weights were estimated

and subsequently duplicated.

A sum-of-squares penalty term L2 =aðKT
preKpre +KT

postKpostÞ was applied to prevent overfitting of the fast-timescale parameters,

where a= 20.

To capture the effect of network level theta modulation, we used a circular Von-Mises type regressor (Harris et al., 2003):

RqðtÞ=
exp

�
k,cos

�
fq � fqðtÞ

�

2pI0ðkÞ
Where k is the depthmodulation parameter which controls the sharpness of the neuron’s tuning to the preferred theta phase f0

q (anal-

ogous to the variance of a non-periodic distribution). I0 is the 0th order modified Bessel function and fqðtÞ is the local network theta

phase calculated from the LFP.
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To capture ripple modulation, we used a modified version of the theta regressor to prevent overfitting during periods of no ripple

modulation:

RRIPðtÞ=
2
4exp

�
k,cos

�
q
0 � qðtÞ

��

2pI0ðkÞ

3
5

PRIP

Where PRIP is the binarized local ripple power recorded from the LFP and all other parameters are equivalent to those in the theta

regressor.

The multi-unit-activity (MUA), defined as the total spike count from all neurons recorded in a given trial in bin t, was also used as a

regressor:

RMUAðtÞ= expðM,MUAðtÞÞ
Where M is a gain parameter. Finally, the baseline firing rate was fitted as:

R0ðtÞ= expðF0Þ
Where F0 defined the natural logarithm of the baseline firing rate (Hz).

The transmission kernels obtained from the GLM were defined as multiplicative increases in rate above the baseline firing rate as

captured by the other regressors. However, the fast-timescale component of the convolutionmethodwas defined in absolute units of

spikes/bin. To compare the two (Figure S3), we converted the fast-timescale component to a multiplicative rate by dividing by the

slow-timescale synchrony:

Kconv =
CCG� lslow

lslow

When calculating the ROC curve, we performed the reverse operation, converting the GLM kernels into absolute units relative to

the slow-timescale baseline lslow;GLM . To obtain lslow;GLM (Figure S3), we first generated the time-varying rate from the product of the

regressors and their estimated parameters. We then averaged the rate in the mth bin surrounding each spike from the presynaptic

cell, for all bins in the CCG. We then used the same equations defined for the convolution technique to calculate Pfast and Pcausal

for the GLM fits.

The classification performance of the p value feature (described above) was compared to two other features (Figure S3). Excess

causal synchronywas defined as the sum of the 0.8-2.8ms bins, normalized by the sum of the kernel. Excess causal – anticausal syn-

chrony was defined as:

P2:8ms
m= 0:8mslfastðmÞ �P�2ms

m=�0:8mslfastðmÞPN
�NlfastðmÞ

Separability (Figure 1E) was defined as the binary loss classification accuracy of a linear SVM using a given feature.

Detection of Fast INT-INT and PYR-INT Synchrony
To detect fast synchrony, independent of synapse detection, two consecutive 0.4msCCGbinsmust have shown greater (Pfast < 0.01)

synchrony than expected from lslow.

Calculation of the Inter-spike Interval Distribution
For each pair of neurons, we first counted the number of instances in which Neuron A fired followed by Neuron B at some ISI = Dt

without either neuron firing during Dt. This count was compared against a null distribution in which a constant value from 0-30 s was

added to each spike train, thus preserving first order spike train statistics but shuffling second order interactions. In this manner,

spike trains were shuffled 1000 times and the excess ISI count was measured in the number of standard deviations the observed

count was higher/lower than the mean of the shuffled distribution. Statistics comparing different groups were done through non-

parametric Wilcoxon ranksum comparison of these means.

Spike Transmission Probability Conditioned on Prior Neural Activity
We considered how spike transmission depended upon the previous activity of the presynaptic neuron (Figure 6), the postsynaptic

neuron (Figure 7G), and other simultaneously recorded convergent or divergent pyramidal cells (Figure 5). For comparing how the

timing of prior activity from other neurons (including the postsynaptic cell) influences spike transmission, we retained only those

spikes from presynaptic Neuron 1 that followed that of Neuron 2 at some ISI = Dt during which neither neuron spiked in the interim.

From these sub-sampled spikes, the spike transmission probability was calculated as before. For cases in which the prior activity of

the presynaptic cell was under study (e.g., short-term depression/facilitation), we retained only those spikes from Neuron 1 that
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followed prior spiking at some ISI =Dt. Again, the spike transmission probability was calculated as before.Dt was chosen fromN= 40

logarithmically spaced ISIs from 0.5 ms to 2000ms).

We also considered how the rate of the postsynaptic cell at the time of presynaptic spiking influenced spike transmission proba-

bility. For this analysis, we calculated the instantaneous firing rate of the postsynaptic cell 0 to 200 ms before each presynaptic spike

and sub-sampled the presynaptic spiking accordingly. From these sub-sampled spikes, the spike transmission probability was

calculated as above.

Analysis of Short-Term Facilitation and Depression
Short-term facilitation and depression weremeasured by comparing how spike transmission probability of the second spike of a pre-

synaptic ‘‘burst’’ changed as a function of interspike interval. Following Tsodyks and Markram’s analysis of short-term plasticity

(Tsodyks et al., 1998; Tsodyks and Markram, 1997), we fit three models to describe how spike transmission probability is affected

by presynaptic inter-spike interval. For the full model with both depression and facilitation, the synaptic filter, I, was defined as the

transmission probability at each presynaptic ISI as:

I=A � ðS+F � DÞ; where
S=U � e�ISI=tsynapse
D= 1� U � e�ISI=tdepression
F =U � e�ISI=tfacilitation +U � �1� U � e�ISI=tfacilitation
�

The constant, A, reflects the asymptotic connection strength as defined by the spike transmission probability. tsynapse, tdepression,

tfacilitation reflect the time constants describing synaptic integration, depression, and facilitation. The range of tsynapse was 0-3 ms,

while the range of tdepression and tfacilitation were between 0-10,000 ms. The constant U is an abstract free parameter that reflects

the amount of synaptic ‘‘resources’’ available with every presynaptic spike.

The depression only model took the same form except,

I=A � ðS+DÞ
Similarly, for the facilitation only model

I=A � ðS+FÞ
To compare the model fits with different degrees of freedom (N = 4 for facilitation and depression, N = 5 for the full model), the

goodness-of-fit was assessed with an adjusted R2 and compared to that in which the models were fit 1000 times to data in which

ISIs were randomly shuffled. Depressing synapses were those in which the observed adjusted R2 was > 95% larger than the shuffled

data and the difference between the full model R2 and the depression R2 was < 95% from the difference in the shuffled models. The

same criteria was used for the facilitating connections using the adjusted R2 from the facilitation only model. Connections requiring

the full model were those with adjusted R2 > 95%higher than that observed in the shuffled data and could not be defined by themore

parsimonious models.

Ripple Detection
Ripple detection was performed on the recording site in the center of the pyramidal cell layer with the largest ripple amplitude. The

20 or 30 kHz sampled data was band-pass filtered from 100-200 Hz, squared and z-score normalized. Ripples were defined as

events starting at 1SD, peaking at > 2 SD, and remaining at > 1SD for < 200ms and > 20ms around the peak. When possible, a control

detection protocol was performed on a channel whose recording site was external to the hippocampus, and false positive ‘‘ripple’’

events (e.g., muscle artifacts) detected on both channels were removed. Ripples events were removed for synapse detection and the

tabulation of interspike intervals. To increase the number of synchronous events under study, ripples were included for the analysis of

how spike transmission changes as a function of prior network activity. Excluding ripples from this analysis decreases the resonant

boost at ripple frequency in Figure 5B, but otherwise does not qualitatively change the outcome of the present analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyseswere performed inMATLAB (MathWorks). All tests were two-tailed. Tests include: Non-parametricMann-Whit-

ney U test,Wilcoxon’s signed rank test, Kruskal-Wallis one-way analysis of variance, two-way analysis of variance. Correlationswere
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computed using Pearson’s or Spearman’s correlation coefficient, noted in text.When comparingmultiple time points (e.g., Figure 5F),

the alpha level was Bonferroni-corrected according to the number of repeated tests (time points).

DATA AND SOFTWARE AVAILABILITY

LFP and spike data will be deposited in http://CRCNS.org and freely available upon publication.
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