Reactivations of emotional memory in the hippocampus–amygdala system during sleep

Gabrielle Girardeau1, Ingrid Inema1,4 & György Buzsáki1–3

The consolidation of context-dependent emotional memory requires communication between the hippocampus and the basolateral amygdala (BLA), but the mechanisms of this process are unknown. We recorded neuronal ensembles in the hippocampus and BLA while rats learned the location of an aversive air puff on a linear track, as well as during sleep before and after training. We found coordinated reactivations between the hippocampus and the BLA during non-REM sleep following training. These reactivations peaked during hippocampal sharp wave–ripples (SPW-Rs) and involved a subgroup of BLA cells positively modulated during hippocampal SPW-Rs. Notably, reactivation was stronger for the hippocampus–BLA correlation patterns representing the run direction that involved the air puff than for the ‘safe’ direction. These findings suggest that consolidation of contextual emotional memory occurs during ripple-reactivation of hippocampus–amygdala circuits.

RESULTS
Rats learn the daily location of an aversive air puff on a linear track
To study hippocampal–amygdala reactivations, we designed a task by combining a classical spatial task with an aversive component to recruit BLA neurons. Rats (n = 4) were pretrained to run back and forth on a linear track for water rewards. After steady performance was achieved, we introduced an aversive air puff at the same location of the track on each lap in one of the running directions. The location and direction of the air puff was changed daily in a pseudo-random manner. Previous work has shown that air-puff-induced contextual fear learning relies on both the amygdala and the hippocampus10. We adapted this task to allow daily behavioral training and recordings of large neuronal ensembles in freely moving animals. Each daily recording session consisted of a pre-run behavioral test session on the track without the air puff, followed by pre-learning sleep in the home cage (‘pre-sleep’, categorized as pre-REM or pre-NREM), a training session (‘run’) with the air puff, post-learning sleep (‘post-sleep’, categorized as post-REM or post-NREM) and a post-run test session without the air puff (Fig. 1a). Because rats slow down before crossing the air puff location if they remember its location, we quantified memory performance from the pre-run and post-run test epochs by comparing the running speed of the rat in the danger zone of the current day (defined as the 20 cm preceding the air puff location) with the speed at the previous day’s danger zone (Fig. 1a,b and Supplementary Fig. 1a). The current danger zone, initially neutral during pre-run, acquires an aversive valence during training, while the previous danger zone loses its aversive nature. Therefore, the systematic reversal in the speed ratio (previous/current danger zone) between pre- and...
post-run indicates learning of the new air puff location (Fig. 1b and Supplementary Fig. 1b). The typical behavioral pattern on the track during run was a reduced speed before the air puff, followed by an acceleration after passing through the danger zone. A similar speed change was maintained during post-run, whereas speed smoothly increased throughout the track during pre-run (Fig. 1c). This was quantitatively reflected by the significantly slower speed in the current danger zone in post-run compared to pre-run (Fig. 1b,c). The aversive valence of the air puff gradually diminished with training days (Supplementary Fig. 1c). The location of the air puff on the track did not correlate with the speed in the current danger zone in pre-run, training or post-run, ruling out a systematic bias of the air puff location on the results.

BLA recordings and sleep physiology

We recorded ensembles of neurons from both left and right amygdala and the dorsal CA1 hippocampal region during the task (Fig. 2a,b). Eight-shank silicon probes were moved downward by 140-μm steps between each behavioral experiment. This allowed recording from large areas of the amygdala and the piriform cortex in each rat (Supplementary Fig. 2). Over the course of a total of 61 sessions, we recorded 7,390 well-isolated units (rat 1, 2,444; rat 2, 1,294; rat...
Figure 2 Physiological characterization of BLA. (a) Silicon probe recordings from the dorsal hippocampal CA1 (four-shank probe) and bilateral amygdala (eight-shank probes; total 160 channels) and example local field potentials (LFPs) and units (raster plots) in the hippocampus (Hpc; red) and left and right amygdala (BLA; blue). Hippocampal SPW-R times are indicated by gray lines in NREM sleep. (b) CA1 and BLA spectrograms for an example session (out of 29 sessions in 3 rats with simultaneous BLA and hippocampus recordings). Spectrograms were used to define brain states (wake, NREM or REM sleep; colors represent power in arbitrary units, from green (low) to red (high)). (c) Distributions of firing rates for monosynaptically identified pyramidal cells (orange, n = 675 cells; see Online Methods and Supplementary Fig. 3), interneurons (blue, n = 175 cells) and other cells (gray, n = 1,188 cells) in BLA during NREM vs. wake (top left) and REM vs. wake (top right). The distribution of REM/wake and NREM/wake firing rate ratios (bottom) is skewed toward 1 for pyramidal cells (orange, monosynaptically identified pyramidal cells; n = 675; NREM/wake: P = 4.07 × 10⁻⁴⁶, z = 14.25; REM/wake: P = 8 × 10⁻⁴², z = 13.54; Wilcoxon signed rank tests), indicating an increase in firing rate during both sleep stages compared to wake. Interneurons do not change firing rates between REM and wake (blue, monosynaptically identified interneurons, n = 175; REM/wake: P = 0.21, z = 1.25) and slightly decrease firing rates during NREM compared to wake (NREM/wake: P = 1.97 × 10⁻⁵, z = −6.00; Wilcoxon signed rank tests; dotted lines: medians).

BLA–hippocampus coordinated reactivations during NREM sleep
Reactivations across the hippocampus–amygdala network as well as within-structure networks (Supplementary Fig. 4) were quantified using the explained variance (EV). EV is the percentage of variance in the population of pairwise correlations during post-sleep (REM or NREM) that can be explained by run correlations (‘reactivation’) while taking into account pre-existing correlations during pre-sleep (REM or NREM) and Online Methods). The reverse explained variance (REV), calculated by switching the pre-sleep and post-sleep epochs, is used as a control value. The EV and REV, calculated using hippocampus–BLA pyramidal cell pairs, showed significant reactivations between the hippocampus and BLA during post-NREM (Fig. 3c). The gradual decay in reactivations over the first hour of NREM sleep (Fig. 3c; mean differences between EV and REV, ± s.e.m.: 0–20 min, 2.89 ± 0.47%; 20–40 min, 1.72 ± 0.44%; 40–60 min, 1.31 ± 0.60%; n = 19 sessions, P = 0.014, d.f. = 2, χ² = 8.53; Kruskal–Wallis test) paralleled the previously described decay for pairs of hippocampal neurons.35,36 Reactivations were maintained when both pyramidal cells and interneurons were included in the EV calculation (Supplementary Fig. 5). Neurons in the piriform cortex showed weaker experience-induced
reactivation with their CA1 partner neurons (Fig. 3d; Wilcoxon one-tailed rank sum test on EV – REV for hippocampus–BLA (n = 25 sessions, mean EV – REV 3.13 ± 0.73%, s.e.m.) vs. hippocampus–piriform cortex (n = 14, mean EV – REV 0.85 ± 0.34%, s.e.m.), P = 0.0092, z = 2.38), while there were no reactivations at all between the central nuclei and the hippocampus (Fig. 3e). Reactivations during REM sleep were not significant in any structure, despite the robust REM-sleep-specific increase in BLA putative pyramidal cells firing rates (Figs. 2c and 3c–e and Supplementary Fig. 5a).

A subset of BLA cells are modulated during hippocampal SPW-Rs
BLA neurons receive direct input from ventral, but not dorsal, CA1 neurons. However, spatial location is more precisely coded by dorsal CA1 neurons than ventral ones. Because both dorsal and ventral hippocampal neurons fire together during large-amplitude SPW-Rs, SPW-Rs may establish functional connections between the dorsal hippocampus and amygdala. To test this hypothesis, we examined the functional relationship between SPW-Rs and BLA neurons. A fraction of BLA neurons were significantly and positively modulated (‘upmodulation’; 42 of 163 interneurons (25.8%), 137 of 1,233 pyramidal cells (11.1%)) or negatively modulated (‘downmodulation’; 24 of 163 interneurons (14.7%), 102 of 1,233 pyramidal cells (8.3%)) during hippocampal SPW-Rs (Fig. 4). This confirmed the indirect influence of dorsal hippocampal SPW-Rs on BLA cells. Moreover, reactivations calculated using SPW-R-modulated BLA cells were larger than for nonmodulated pairs (Supplementary Fig. 5b).
Ripple-modulated BLA cells are preferentially involved in reactivations

In a further attempt to characterize the reactivation dynamics during sleep, we used two complementary approaches. In the first approach, we defined the firing properties of individual neurons relative to ripples and then examined how such properties influenced reactivations. The second approach worked from the opposite direction. First, we quantified reactivations for each cell irrespective of their LFP ripple correlates and examined how their reactivation values were related to ripples. During run, a fraction of hippocampal–BLA pyramidal neuron pairs showed significantly positively correlated spike trains (2,521 of 37,660; 6.69%). Another small percentage (1,258 of 37,660; 3.34%) was negatively correlated, while the remaining majority (33,881 of 37,660; 89.96%) was not reliably correlated (Online Methods; total number of pyramidal–pyramidal hippocampus–BLA pairs 37,660: rat 1, 16,056; rat 3, 3,836; rat 4, 17,768). To test whether a selective subgroup of pairs was preferentially involved in sleep reactivations, we separated pairs into nine subgroups based on a combination of run correlation and SPW-R modulation of the BLA partner (Fig. 5a, Supplementary Fig. 6 and Supplementary Table 2). Hippocampus–BLA pairs with significant, positive run correlations and SPW-R upmodulation of the BLA partner showed the largest pre-NREM to post-NREM change (one-way ANOVA, $P = 1.1 \times 10^{-45}$, d.f. = 8, $F = 29.09$; post hoc comparisons, $P < 0.001$).

The dominant contribution of this specific subgroup of cell pairs to reactivations was confirmed by calculating the EVs across the nine subgroups (pairs grouped across animals and sessions; Supplementary Fig. 6b).

In the second approach, we evaluated the contribution of each cell pair to the overall EV (calculated with all pairs across animals and sessions) by removing hippocampus–BLA pairs one by one. The change in EV ($EV_{\text{all}} - EV_{\text{min}}$ pair) indicates the individual contribution of the removed pair (the larger the decrease in EV, the larger the contribution of the pair; Supplementary Fig. 7a). To obtain a per-cell contribution measure, contributions were averaged over all the pairs that the cell participated in. We then divided BLA cells into quartiles according to the magnitude of their individual contributions. We found that upmodulated BLA neurons in the most strongly contributing quartile showed a specific increase in SPW-R gain (that is, firing rate during versus outside SPW-R) from pre-NREM to post-NREM compared to the upmodulated cells of the remaining three, low-contribution quartiles (Fig. 5b and Supplementary Fig. 8; Wilcoxon one-tail sign-rank test on gain averaged in a 500-ms window around ripple peak; high-contribution quartile: $P = 4.57 \times 10^{-5}$, $z = 3.91$; low-contribution quartiles: $P = 0.991$, $z = 2.40$). To control for the effects of firing rates, we calculated EVs and REVs for pairs pooled according to their firing rates (individual BLA cell firing rate, hippocampal cell firing rate or combined firing rate). This control showed that EV did not depend on firing rates (Supplementary Fig. 9).

The aversive trajectory is reactivated during SPW-Rs

BLA cells that are upmodulated during hippocampal ripples show a preferential involvement in coordinated reactivations, through an increased gain of their modulation after training. However, these observations offer only indirect support for reactivations during hippocampal SPW-Rs. Furthermore, these findings alone do not directly address the critical role of threat in sleep reactivations. To obtain more direct support, we used a reactivation strength (R) measure (Supplementary Fig. 10 and Online Methods) and analyzed firing patterns separately during the two directions of travel. Since the air puff was presented during only one direction of run on the track (air puff or danger trajectory) on a given day, the opposite run can be considered safe. Therefore, we compared the reactivation strengths of the hippocampus–BLA pairwise correlation patterns of the air puff vs. the safe direction. We found that the reinstatement of the joint hippocampus–BLA neuron representation was significantly enhanced during post-NREM SPW-R compared to pre-NREM SPW-Rs for the air puff direction but not for the safe direction (Fig. 6a,b and Supplementary Fig. 11b,c). Because the firing rates of BLA cells did not significantly differ between safe and air puff trajectories (pyramidal cells: $P = 0.270$, $z = 1.101$; all cells: $P = 0.763$, $z = 0.302$, Wilcoxon signed rank tests), the reactivation results cannot be explained by air-puff-induced firing rate increase. The occurrence rate of SPW-R was also not significantly different between the pre-NREM and post-NREM epochs ($P = 0.192$; $z = -1.289$, $n = 41$ sessions; Wilcoxon signed rank test; Supplementary Fig. 11d). These observations thus confirm that NREM sleep SPW-Rs are specific time windows within which the place–threat association is reinstated during sleep.

NREM contributes to reinstatement of new place–threat representations

Finally, we examined how sleep reactivations are linked to the place–threat representation during wakefulness. Rats learned a new air puff location every day during the training session (Fig. 1a,b).
The joint representation of space and threat is thus expected to be different between the pre-run test, when the new location has not been experienced yet, and the post-run test, when it has been experienced and replayed during sleep. Figure 7a shows examples of highly contributing BLA–hippocampus cell pairs that showed air-puff-related activity (BLA) and air-puff-related place fields (hippocampus). These coordinated patterns developed during training and were maintained in the post-run test in the absence of an air puff. To quantify this relationship, we examined separately the most strongly contributing pairs (represented by the highest 2.5th percentile of the contribution distribution) and the least strongly contributing pairs (the 2.5th percentile of lowest contribution; Supplementary Fig. 7b). We found that for strongly contributing, but not for weakly contributing, pairs the increase between pre-run and post-run coactivity was significantly correlated with the increase in coactivity between pre-NREM and post-NREM (Fig. 7b). This result was maintained when the most strongly and the most weakly contributing quartiles (instead of 2.5th percentiles) of the distribution were compared (Fig. 7c). These coordinated changes indicate that reactivations during sleep play a role in the stabilization of the new space–threat representation.

DISCUSSION

We found that correlated neuronal activity between neurons of the dorsal hippocampus and BLA was strengthened during NREM sleep following experience in a spatially anchored threat model. Reactivations involved a subgroup of hippocampus-responsive neurons in BLA and occurred in association with hippocampal SPW-Rs. Notably, the reactivation of hippocampus–BLA coactivity during post-experience sleep was stronger for the patterns of pairwise correlations dominating during the travel through the danger zone, compared to reactivations of the pairwise patterns representing the safe direction.

Previous works have shown that in both spatial memory tasks and contextual threat learning only a small set of neurons is active in the hippocampus and amygdala. Identifying amygdala neurons that receive hippocampal inputs required recording from an unprecedentedly large number of individual neurons simultaneously in these two structures. We achieved this by using multi-shank silicon probes and an experimental design that allowed us to generate new place–threat associations every day so that we could slowly advance our probes through the full structure of the amygdala and sample new sets of neurons daily. Of the large number of cross-structure neuron pairs, we identified the relevant subset whose coactivation increased significantly from pre-experience to post-experience sleep and thus contributed to the cross-structure reactivations. We further characterized the amygdala members of these pairs as hippocampus–responding because they increased firing rates during hippocampal SPW-Rs. In contrast, BLA neurons that decreased or did not change their activity during SPW-Rs did not show significant change in their correlation with hippocampal neuron partners from pre-experience to post-experience sleep. Furthermore, neuron pairs across the hippocampus and BLA that showed the strongest increase in correlation from pre-experience sleep to post-experience sleep were those that also showed the strongest correlations during learning of the place–threat association. For the reactivated pairs only, the changes in the strength of coactivation during sleep induced by training were correlated with the changes in the coactivations on the test sessions on
Indeed, one postulated role of SPW-Rs is to combine neuronal activity ventral neurons projecting to the amygdala populations of the dorsal and ventral hippocampus, likely involving BLA, a fraction of BLA pyramidal cells and interneurons were effective and short. If firing correlations were driven by UP-DOWN states of sleep or spindles, more prolonged firing rate responses would be expected. Second, DOWN-UP shift induces increases but not decreases in firing rates. In contrast, a large fraction of the amygdala neurons responded with suppression of firing rates during hippocampal SPW-R. Third, only SPW-R-excited BLA neurons showed a significant change from pre-experience to post-experience sleep. Conversely, we found that BLA neurons with high contribution to reactivations were more likely to increase their association with SPW-R during sleep after learning compared to sleep before learning. Overall, our findings suggest that SPW-Rs are instrumental for establishing functional connections between dorsal hippocampus and BLA to consolidate place–threat associations.

Previous findings in humans and other animals have suggested that REM sleep is critical for the consolidation of emotional information. Our results showing an elevated firing rate of BLA pyramidal cells during REM sleep are in line with this hypothesis. However, we did not find significant reactivations during REM sleep. The short duration of REM sleep episodes and the consequently low number of spikes available for the analyses we performed may contribute to the lack of significant reactivations during REM sleep. It is also possible that REM sleep plays a different or complementary role in the consolidation of emotional memories that does not involve an offline reinstatement of the joint hippocampus–BLA representation. Finally, our work did not address the potential role of subcortical neurotransmitters in memory replay and consolidation or the role of the entorhinal cortex as a possible mediator of information exchange between hippocampus and amygdala. These questions remain to be answered by future investigations.

In summary, we identified a small subset of hippocampus–BLA neuronal pairs that are reactivated during sleep SPW-Rs following training in a place–threat association task. The BLA partners of these pairs are preferentially upmodulated during SPW-Rs and selectively increase their firing rate during SPW-Rs after training. This finding suggests that SPW-R replay provides a physiological mechanism to integrate place cell activity in the dorsal hippocampus and threat-responsive neurons in the amygdala. We hypothesize that concerted activation of hippocampal and BLA cells during SPW-Rs is responsible for combining spatial/contextual and emotional representations during NREM sleep and thus for the consolidation of contextual fear. Direct support for this hypothesis will require further experiments, such as dynamic perturbation of BLA neurons specifically during SPW-Rs.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.
ACKNOWLEDGMENTS

We thank J. LeDoux, C. Léna, E. Stark, A. Peyrache and L. Roux for comments and discussions on the analyses and manuscript and all the members of the Buzsáki laboratory for their support. This work was supported by the Fondation pour la Recherche Médicale (FRM), the Fyssen Foundation, a Charles H. Revson Senior Fellowship in Biomedical Science (G.G.), NIH MH54671 and MH107396, NS 090583 and the Simons Foundations (G.B.).

AUTHOR CONTRIBUTIONS

G.G. and G.B. designed the study, G.G. and I.I. performed the experiments, G.G. analyzed the data and G.B. and G.G. wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

ONLINE METHODS
Subjects and electrode implantation. All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at New York University Medical Center. Four individually housed male Long-Evans rats were used in this experiment, and maintained on a 12h:12h light-dark cycle (lights on at 7 a.m.) throughout the study. Animals (300 g, 3 months old at time of surgery) were deeply anesthetized with isoflurane. Three silicon probes (2 with 8 shanks, 1 with 4 shanks, 160 recording channels total, NeuroNexus H32 and H62, A-style, Buzsáki32 and 64 layout) mounted on individual moveable microdrives51 were implanted above the amygdala bilaterally (AP \(-2.5 \text{ mm ML } \pm 3.6 \text{ to } 5.5 \text{ mm from bregma}\)) and in the dorsal hippocampus (left or right, CA1, AP \(-3.5 \text{ mm, ML } \pm 2.5 \text{ mm}\)). The drives were secured to the skull using dental cement. Skull screws above the cerebellum were used as ground and reference. The drives and probes were protected by a cement-covered copper-mesh Faraday cage on which the probe connectors were attached. Animals were allowed to recover for at least 5 d with \textit{ad libitum} food and water. In one animal, the hippocampal probe failed during the course of the experiment. This animal was hence not used for analysis about hippocampus–BLA coordination, but was used for intra-amygdala and intra-piriform cortex physiology and reactivation analysis. Data collection and analysis we not performed blind to the conditions of the experiments.

Recordings and behavior. All animals were free from prior manipulation before being included in the study. After a week of daily handling, animals were placed on water restriction and trained to run back and forth on a linear track for water rewards (Fig. 1). All experiments were performed during the day (light cycle). Three days before surgery, they regained access to \textit{ad libitum} food and water. After the recovery period, the probes were slowly lowered in the brain and the recordings started when reaching hippocampal CA1 pyramidal layer and the superior limit of BLA, respectively. During this period, the rats were placed back on water restriction to >85% of their normal weight and re-exposed to the linear track. The position of the animal was tracked using a camera mounted on the ceiling and a red LED attached to the head of the animal. Signals were recorded at 20 kHz using an Amplipex recording system (Amplipex Inc., Szeged, Hungary) and the associated Ampliplex software. The amygdala electrodes were lowered by 140 \textmu m at the end of each recording session to ensure a complete spanning of the amygdala region over the course of the experiment. The hippocampal probe was adjusted daily to optimize ripple and unit recording.

Preprocessing. 20-kHz signals were resampled at 1,250 Hz to extract LFP data. Spikes were extracted by high-pass filtering (800 Hz) and thresholding the signal, then clustered using Klustawik (http://sourceforge.net/projects/klustawik/) followed by manual clustering using Clusters (http://neurosuite.sourceforge.net/) Data were visualized and preprocessed using Neuroscope (http://neurosuite.sourceforge.net/) and NDManager (http://neurosuite.sourceforge.net/).52 Units were classified into putative pyramidal cells and putative interneurons using monosynaptic connections (Supplementary Fig. 3). The remaining, unidentified cells were sorted using k-means clustering (two clusters) on the inverse frequency (that is, duration; fast Fourier transform) and peak-to-trough values (in milli-seconds) of the mean waveform of the spikes. Sleep stages were manually scored through visual inspection of the hippocampus and amygdala spectrograms and accelerometer signal using the visual scoring custom program TheStateEditor. Periods of NREM were associated with immobility and high theta/delta ratio (in hippocampus) or gamma (45–65 Hz)/broad low frequency (1–12 Hz) band ratio (in amygdala). REM sleep was characterized by sleep posture and regular theta waves.

Statistical analysis. Non-parametric Wilcoxon rank sum or signed rank sum (two-tailed, unless otherwise specified) tests were used throughout the paper. All tests used are specified in the figure legends or in the text. Sample sizes were not predetermined, but our sample sizes are similar to \textit{n} animals) or higher than \textit{n} animals) that generally employed in the field. When parametric tests were used, the data satisfied the criteria for normality (Kolmogorov–Smirnov test) and equality of variance (Bartlett’s test for equal variance). For multiple comparisons in the \textit{post hoc} tests, the original \textit{P}-values are shown but the significance thresholds *\textit{P} < 0.05, **\textit{P} < 0.01, ***\textit{P} < 0.001 are indicated with either a Bonferroni corrections or Tukey–Kramer test for multiple comparisons. All data are represented with box plots showing the median with central and dispersion statistics. Some extreme data points are not shown in the figures for clarity but all data points were included in the analyses. Bar plots (Fig. 5a) are shown only in combination with the full distributions (Supplementary Fig. 6). \textit{P}-values for Pearson’s correlations are computed using a Student’s \textit{t} distribution for a transformation of the correlation (Matlab “corr” function). A Life Sciences Reporting Summary is available for an overview of ethics and statistics.

Analysis. All analyses were performed using Chronux (http://chronux.org/), the FMAToolbox (http://fmatoolbox.sourceforge.net/) and Matlab (The MathWorks, Inc., Natick, MA, USA) built-in functions and custom-written scripts. For behavioral measures, speed ratios were calculated as \((pDZ \text{ speed} – cDZ \text{ speed})/(pDZ \text{ speed} + cDZ \text{ speed})\), with \(pDZ\) the previous danger zone (20 cm preceding the air puff location of the previous training day) and \(cDZ\) the current danger zone (20 cm preceding the air puff location of the current training day). Because rats run more and faster laps when habituated to the air puff, a habituation index was calculated for each training session and animal as the total number of back-and-forth laps divided by the total time spent on the maze \(\times 100\). To obtain the air-puff-centered speed curves, the track positions were normalized and aligned to the air puff location for each session. In this plot (Fig. 1c), two sessions are missing due to corruption of the animal position data.

Firing rate (FR) changes between wakefulness and REM sleep were evaluated using the REM/wake ratios, calculated as \((\text{REM FR} – \text{wake FR})/(\text{REM FR} + \text{wake FR})\). Positive ratios indicate REM FR > wake FR. Ripple detection was performed by band-pass filtering (\(-100–200 \text{ Hz}\)), squaring and normalizing, followed by thresholding of the field potential recorded in CA1 pyramidal layer. SPW-Rs were defined as events starting at 1 s.p.d., peaking at 4 s.d., and remaining at >1 s.d. for <130 ms and >20 ms around the peak. A control detection was performed on a nonhippocampal channel and all events simultaneously recorded from the hippocampal and control channels (for example, muscular noise) were removed. Ripple modulation was assessed using a Poisson test with \(P < 0.001.\) This approach tests whether the parameters for the Poisson cumulative distribution function of spikes outside SPW-Rs (baseline) are the same as for the Poisson cumulative function during SPW-Rs (custom program calling the “poiscd” Matlab function). The baseline (inter-ripple) firing rate was computed during NREM sleep epochs excluding SPW-Rs. To avoid contamination of rate changes around SPW-Rs, the 100-ms periods before and after each ripple were also excluded.

Explained variance (EV) and reverse explained variance (REV) were calculated per session using subsets of cell pairs selected from the structures of interest. Only sessions with a minimum of 1 shank and 6 cells in each structure were included in the analysis. This criterion accounts for the variation in the number of sessions depending on the subset of cells the EV and REV are calculated for (pyramidal cell only vs. all cells). For REM sleep, only sessions with a minimum of 3 min of total REM sleep (all REM sleep epochs were pooled together) in both pre- and post-sleep were included. Pairwise correlations for EV and REV were calculated using the Pearson correlation coefficient on 50-ms-binned spike trains. The coefficients were separately calculated for pre-sleep (NREM or REM), training, and post-sleep (NREM or REM) periods and assembled into correlation matrices. The correlations between all combinations of these three matrices were then calculated and were used to assess the percentage of variance in the post-sleep period that could be explained by the patterns established during training while controlling for pre-existing correlations in the pre-sleep session (EV):

\[
EV = \frac{R_{T,52}^2}{R_{T,S2}^2} = \left(\frac{R_{P,52} – R_{P,S2} \times R_{S2,S1}}{1 – R_{S2,S1}} \right)^2
\]

where \(R\) variables are the correlation coefficients between training (T), pre-sleep (S1) and post-sleep (S2) pairwise correlation matrices. The control value (REV) is obtained by shifting the temporal order of the pre- and post-sleep session17,18. Only sessions with \(EV > REV\) for the first 20 min NREM epoch were used to calculate the decay of reactivations (EV/REV in first and subsequent 20-min NREM epochs; 6 sessions with \(EV > REV\) were excluded). Reactivations were considered significant when EV was significantly different from REV (Wilcoxon sign rank test). Comparisons of reactivation across time or structures were performed on the difference \(EV – REV\) (Wilcoxon rank sum tests).
An alternative approach was used to assess the contribution of individual cell pairs to replay. For this analysis, cell pairs were pooled (across sessions and animals) into 9 groups based on (i) the nature of hippocampal ripple-modulation of the BLA cell of the pair (up, down or none) and (ii) the significance of the Pearson correlation during training (positively correlated, negatively correlated ($P < 0.01$) or uncorrelated ($P > 0.01$) pairs). The nine groups and the number of pairs in each of these groups are summarized in Supplementary Table 2. Next, we computed (i) the difference between pre-NREM and post-NREM correlations for all pairs in each group, where the groups were compared by ANOVA followed by Bonferroni corrected multiple comparisons, and (ii) EV and REV for each subgroup, where the contribution of each pair was evaluated by calculating a global EV (all pairs) and then taking the difference between the global EV and recalculated EV without that pair (Supplementary Fig. 10a). A decrease in EV without that pair indicates a positive contribution of that pair. Since a single cell can participate in several pairs, a contribution per cell was also calculated by averaging the contributions of all pairs in which the cell participated. Cells and cell pairs were then pooled according to the magnitude of their contributions, using percentiles of the distribution of contributions (quartiles or 2.5th percentile of the left and right tails of the distribution). The gain in ripple upmodulation between pre- and post-NREM was calculated for each 10-ms bin by dividing the firing rate in each bin by the baseline firing rate outside SPW-Rs (inter-ripple NREM intervals). The mean peri-ripple gain was then calculated for each cell and averaged across cells. The data are shown for ±2-s windows for clarity. The statistics were performed on pre- and post-NREM ripple mean gains using a one-sided Wilcoxon signed rank test on the mean smoothed (20-ms Gaussian window) gain in ±250-ms window centered at the ripple peak.

To calculate the reactivation strength R in pre-experience sleep and post-experience sleep epochs, BLA and hippocampal pyramidal cell spike trains were binned (50-ms bins) and z-scored. This gives z_{bla} and z_{hpc} the $n_{pyr} \times n_{hpc}$ z-scored spike count matrices for hippocampus and BLA. The hippocampus–BLA correlation matrix $C_{bla-hpc}$ for the training epoch (whole epoch or safe runs or air puff runs) was calculated as $C_{bla-hpc} = z_{bla}z_{hpc}^T/n_{hpc}$. The similarity between the training correlation matrix (whole run, safe or air puff trajectories) and the correlations at each time point of the pre-sleep and post-sleep epochs (reactivation strength R) was then calculated as $R(t) = z_{t} z_{t}^T$, where z_{t} are the population firing rate vectors of BLA and hippocampus neurons for the time bin t of either pre-experience sleep and post-experience sleep epoch. The reactivation strength R over time was then z-scored over the whole pre-NREM or post-NREM epochs. The peri-ripple reactivation strength was calculated for SPW-Rs occurring during pre-NREM and SPW-Rs occurring during post-NREM as the average R in a ±2-s window around ripple peaks (Supplementary Fig. 10). Finally, the mean peri-ripple reactivation strength R was computed over all rats and sessions. The significance of the difference in R between pre-experience NREM and post-experience NREM SPW-Rs was calculated on the mean R in a 500-ms window centered on the ripple peak using a Wilcoxon signed rank test. These methods used for evaluation of the reactivation strength were previously described for the reactivation of individual components following an ICA or PCA on the correlation matrix. Because we were specifically interested in cross-structure reactivations and these previously used methods could not be directly applied, we used the raw correlation matrix instead of individual or principal components of the training correlation matrix to calculate reactivation strength.

Histology. At the end of experiments, small electrolytic lesions were made to mark the final position of the probes. Rats were euthanized with pentobarbital and perfused using saline and then 10% paraformaldehyde. The brains were extracted, sliced (70 µm), DAPI-stained and coverslipped. The sequential positions of the electrodes were reconstructed for each shank from adjacent slices using the final position of the probe and the expected depth of the probe location for each recording day. This allowed the construction of histology maps showing the putative recorded location for each shank and each recording day (Fig. 1f and Supplementary Fig. 2). These maps were then used to restrict the analyses to specific amygdala nuclei.

Data availability. The data that support the main findings of this study will be publicly available on the CRCNS server (http://crcns.org/).

1. **Sample size**
 - Describe how sample size was determined.
 - No statistical method was used to pre-determine sample sizes but our sample sizes are similar to those typically reported in the field.

2. **Data exclusions**
 - Describe any data exclusions.
 - No data was systematically excluded. Data inclusion is reported in details in the methods section.

3. **Replication**
 - Describe whether the experimental findings were reliably reproduced.
 - N/A

4. **Randomization**
 - Describe how samples/organisms/participants were allocated into experimental groups.
 - N/A

5. **Blinding**
 - Describe whether the investigators were blinded to group allocation during data collection and/or analysis.
 - Experiments and analyses were not performed blind to the conditions of the experiments.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. **Statistical parameters**
 - For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

<table>
<thead>
<tr>
<th>n/a</th>
<th>Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)</td>
</tr>
<tr>
<td></td>
<td>A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly</td>
</tr>
<tr>
<td></td>
<td>A statement indicating how many times each experiment was replicated</td>
</tr>
<tr>
<td></td>
<td>The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)</td>
</tr>
<tr>
<td></td>
<td>A description of any assumptions or corrections, such as an adjustment for multiple comparisons</td>
</tr>
<tr>
<td></td>
<td>The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted</td>
</tr>
<tr>
<td></td>
<td>A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)</td>
</tr>
<tr>
<td></td>
<td>Clearly defined error bars</td>
</tr>
</tbody>
</table>

See the web collection on statistics for biologists for further resources and guidance.
Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study.

Analyses were performed using Matlab and a combination of FMAToolbox (http://fmatoolbox.sourceforge.net/) and custom codes (https://github.com/buzsakilab/papers/tree/master/GGirardeau-BLAHpcInteractions-Package). For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

Materials and reagents

Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

N/A

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines

- **a. State the source of each eukaryotic cell line used.**

- **b. Describe the method of cell line authentication used.**

- **c. Report whether the cell lines were tested for mycoplasma contamination.**

- **d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.**

N/A

Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived materials used in the study.

Long-Evans male rats, 3 months/300g at the time of experiments were used.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population characteristics of the human research participants.

N/A