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Fig. 2. Simulating place cell data. (A) Single-trial simulation. (/) Simulated
theta-phase—position trajectory imposed on place field schematic (as in Fig.
1A) for trial 1 (blue), and trial 2 (purple) at the same speed with a different
initial theta phase at the start of the place field [not to be confused with
onset of phase precession, i.e., the preferred phase at position 0 (2)]. (ii)
Simulated firing rates for model fit to place field in C computed for trajec-
tories in trial 1 and 2 in i. Spiking for each trial (below) simulated via Poisson
process. (B) Summary visualization of simulated data: Spiking was simulated
for 42 trials with varying speeds and initial theta phases, using the best-fit
PTP model from real place cell in C. (/) Mean firing rate vs. position, averaged
over trials. (i) Theta phase vs. position for each spike. (C) Summary visuali-
zation of real place cell data in example place field. (i and ii) Same as in B.

shifted with respect to the spatial input, which changed the
predicted firing rate across the field by a factor of 2. Including
the Poisson variability of spiking, the firing rate within the field
could reasonably be 4 Hz on trial 1 and 16 Hz on trial 2. This
difference is based solely on the initial theta phase and Poisson
variability (6).*

The effect of the initial theta phase on firing rate is amplified
at faster running speeds. We used the PTP model to predict the
firing rate as a function of both running speed and initial theta
phase (Fig. 3B). At slow speeds, the initial theta phase is not very
influential in the overall rate; however, at fast speeds, the
expected rate can vary dramatically. The intuition behind this
observation is when the animal runs slowly, many theta cycles
occur within the place field, making the alignment of any par-
ticular cycle less important for the overall predicted firing rate.
At faster speeds, there are fewer cycles, making the co-
incidence of the theta modulation and spatial input much more
important.

*Differences between phase precession in single trials vs. data pooled across trials have
been reported previously (6). However, we find that the PTP model replicates this result
(SI Appendix, Fig. S5), demonstrating that it is a natural consequence of the simple
assumptions of this model. We hypothesize that the difference in sample size between
pooled and single-trial data, as well as the method used to compute circular correlations
may be the primary cause of this effect.
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The speed-dependent variability could produce spurious cor-
relations between speed and firing rate. We simulated a place
cell experiment 3 times with identical conditions (Fig. 3C). In
each experiment, we randomly varied running speed and initial
theta phase, drawing from a uniform distribution of each, and
used the model to generate spikes. We computed the average
firing rate at each position for the fast, medium, and slow trials.
Across the 3 simulations, an apparently negative relationship
between speed and firing rate arose in one, no relationship was
evident in another, and a positive relationship appeared in the
last. Recall the model used for simulation has no explicit speed
dependence, so each of the apparent relationships is artifactual.
The confound between running speed and firing-rate variability
makes the analysis of speed tuning in place cells difficult, be-
cause standard statistics are not sufficient to assess the signifi-
cance of these relationships.

Quantifying the Effect of Running Speed on Place Cell Activity. In real
place field data, we found a heterogeneous distribution of speed
dependence using standard correlations. We computed the average
speed and firing rate within the place field for each trial and cal-
culated the correlation across trials. Contrary to previous findings
that have reported mostly positive correlations between running
speed and firing rate (3, 7), and in line with a more recent re-
port (16), we found place fields with ostensible negative speed

Fig. 3. Speed-dependent variability can cause spurious correlations with
running speed. (A) Alignment between spatial input and theta modulation
can affect expected firing rate in place fields. Position and theta phase are
simulated for 2 trials with identical running speed, differing only in the
initial theta phase at the entrance of the place field. The resulting model
equations and predicted firing rates are shown: (/) The spatial input function
(black) is identical for the 2 trials, while the phase modulation functions are
shifted according to the initial theta phase for trials 1 (blue) and 2 (green).
(ii) Predicted firing rate vs. position for trials 1 and 2 computed by multi-
plying the spatial input and phase modulation functions in i. (iii) Mean firing
rates for trials 1 and 2, averaged over position. Error bars correspond to SE
(SEM) predicted from Poisson variance of spiking. (B) Mean firing rate
across place field simulated as a function of initial theta phase and run-
ning speed. Variability caused by initial theta phase increases at higher
speeds. (C) Firing rate vs. position in the fast (red), medium (yellow), and
slow (blue) sets of trials in 3 simulated experiments. In each experiment,
30 trials were simulated with randomized speeds and initial theta phases.
Mean firing rate was computed as a function of position for each set of
trials. Conditions were identical for each simulated experiment with no
explicit speed dependence in the model; however, apparent speed mod-
ulation appeared by chance, both negatively (experiment 1) and posi-
tively (experiment 3).
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Fig. 4. Real pyramidal cells show heterogeneous distribution of speed cor-
relations. (A) Speed dependence of example place field with ostensible neg-
ative speed modulation: (i) Trial vs. position of each spike, trials ordered by
mean running speed in the place field. (ii) Firing rate vs. position for fastest
(red), middle (yellow), and slowest (blue) thirds of trials. (iii) Mean firing rate
across place field vs. speed, each point representing one trial. r values
throughout indicate Kendall rank correlation coefficient (P = 0.025). (B)
Same as A for ostensibly unmodulated example place field (P = 0.13). (C)
Same as A for ostensibly positively speed-modulated place field (P = 8.8e-
04). (D) Distribution of speed-firing-rate correlations across all place fields
in dataset.

relationships (Fig. 44) as well as those with apparently positive
relationships (Fig. 4C). We also found a majority of place fields
that did not appear to be speed modulated (Fig. 4B). Across all
place fields in the dataset, the distribution of correlations
appeared to be heterogeneous (Fig. 4D). However, because
speed-related variability can produce spurious correlations (Fig.
3C), these apparent effects must be scrutinized.

To more rigorously assess speed modulation, we used the PTP
model to generate an ensemble of simulated experiments, from
which we computed a null distribution of speed correlations. We
use “null distribution” because the PTP model has no speed de-
pendence, so the resulting correlations arise solely from the sources
of variability accounted for in this model. For each place field in
our dataset, we used the estimated model parameters to virtually
recreate the experiment (Fig. 54). We computed the correlation
between speed and simulated firing rate, and then repeated the sim-
ulated experiments 20,000 times to compute a null distribution
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of correlation values (Fig. 5B). The null distribution varies across
place fields depending on the best-fit model parameters for
each individual field, and so must be computed independently.

Speed-firing-rate correlations for most place fields did not lie
significantly outside the respective null distributions. The distance
between the true correlation value and the null distribution was
measured as a P value in the positive and negative directions (Fig.
5C). A criterion of P < 0.05 was used, and fields with significant
positive and negative modulation were identified. A subset of
place fields with positive modulation (19%) and a subset with
negative modulation (12%) were identified above chance levels.
Nonetheless, the majority of place fields (69%) did not meet our
criterion for significant speed modulation (Fig. 5D). In summary,
we found that the degree of speed modulation in the majority
of place fields lies within the predictions of the PTP model,
which does not include any speed dependence. However, we
found a minority of place fields with speed modulation beyond
the model predictions. Next, we sought the potential mecha-
nisms of such effects.

We extended the PTP model to explore the computational effect
of speed on firing rates of significantly modulated place fields. The
model delineates the independent features of place fields that
could be affected by running speed. Two candidates that could
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Fig. 5. Speed modulation is statistically significant in a small number of place
fields. (A) Mean firing rate vs. speed for real example place field (same as Fig.
4Q), for real experiment (black) and simulated experiment (green). Simulation
performed using model fit to this place field and conditions identical to
real experiment. Kendall correlation coefficient for simulated experiment is r =
0.27 (P = 0.032). (B) Null distribution of speed-firing-rate correlations (green)
computed from 20,000 simulations of the experiment in A, each using the
empirically measured position and theta phase from the original experiment.
Empirical correlation in black. For this example field, we find evidence
for speed modulation beyond what can be explained by the PTP model (P =
0.001). (C) One-tailed P values computed from null distribution for all place
fields in the dataset. Two tests are shown, one for positive speed—firing-
rate relationships (red) and one for negative speed-firing-rate relation-
ships (blue). Values range from 0 to 1, corresponding to the proportion of
simulated experiments with correlation values larger (for negative test) or
smaller (for positive test) than that of the real experiment. Significant
speed modulation is defined as P < 0.05. (D) Proportion of place fields for
which there was statistical significance for negative or positive speed
modulation, and the proportion for which there was no evidence for speed
modulation.
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Fig. 6. Speed model comparison: variants of basic model that include speed dependence. (A) Gain control model: (i) Hypothetical relationship between
amplitude parameter and speed. (ii) Spatial input function as it varies with speed. (iii) Phase modulation function (stationary with respect to speed). (iv)
Hypothetical relationship between firing rate and speed for gain control model. (B) Phase modulation model: same as A, except phase selectivity varies with
speed instead of amplitude. (C) Dual modulation model: same as A, except both amplitude and phase selectivity vary with speed. (D) Proportion of place fields
in each speed modulation category best fit by each model variant. Positively and negatively modulated fields are by majority best fit with a gain control
model, while unmodulated fields are mostly best fit with the original PTP model.

directly impact the average firing rate in the place field are the
amplitude A, (Fig. 64) and the phase selectivity ky (Fig. 6B).T
Modeling amplitude as a function of speed corresponds to a
gain control model, where running speed multiplicatively
scales the magnitude of activity. Modeling phase selectivity as
a function of speed corresponds to a changing window of
spiking within the theta cycle. These 2 mechanisms could also
work in consort in a dual-speed model (Fig. 6C). In each of
these speed-dependent variants of our original model, we
model the speed-dependent parameter as a linear function of
speed. The slope of this function determines the direction and
degree of speed dependence (23).

Significantly speed-modulated place fields are best explained by
a gain control model of speed. We performed a model fit com-
parison for each place field, comparing the speed-dependent
model variants and the original place field model. For each place
field, we fit each model and measured the performance of the
model in predicting a held-out subset of the data. We selected
the model with the highest average log-likelihood as the preferred
model for that place field (Methods). Expectedly, the majority
of unmodulated place fields preferred the original PTP model
(Fig. 6D). Among the subsets of positively and negatively
modulated place fields, the majority preferred a gain control
model of speed modulation. These results suggest the compu-
tational effect of speed operates primarily on the magnitude of
place cell activity, leaving the theta-phase modulation of place
cells unaffected.

TOther features of a place field could also be affected by speed, such as the properties of
phase precession (23). However, our model does not predict that speed dependence of
phase precession will have an effect on firing rate (S/ Appendix, Fig. S6).

McClain et al.

Discussion

Refining Previous Notions of Speed Modulation of Firing Rates. Our
analysis of speed modulation in place cell activity provides some
amendments to previous notions in the spatial navigation field.
We did not find evidence for speed modulation in the majority of
place cells and suggest increased firing rate variability at high
speeds as a potential source of spurious correlations. Of the
minority of fields that did show modulation, some were positively
modulated and others were negatively modulated. For each of
these subsets, speed appears to affect the activity primarily as a
gain control, scaling the overall magnitude, while theta modu-
lation remains mostly unaffected (8, 21, 26-28).*

The lack of robust speed dependence of place cell firing rates
may convey an important robustness of the system. If place cells
are used to for navigation purposes, altering the “code” for behav-
ioral parameters such as running speed may not be advantageous.
Interleaving codes through gain control computations can allow one
population to simultaneously represent multiple variables (3, 19, 29—
31), and our results do suggest that speed dependence in a minority
of place fields is best characterized as gain control. However, the
sparsity of place cells in our data showing any speed dependence
makes this interpretation tenuous.

An additional consideration in studying “speed modulation” is
the relationship between speed and trial number that exists in
almost all experiments. As the animal’s motivation decreases
throughout the course of an experiment, running speed also

*A positive relationship between theta frequency and running speed has been reported
in many studies (21, 26, 27) and questioned by others (8, 28). Through simulation, we find
that, regardless of the relationship, changing theta frequency does not affect estimated
firing rate across the place field (S/ Appendix, Fig. S7).
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decreases, causing an inseparable correlation between speed and
trial number (SI Appendix, Fig. S8). This may be a confounding
variable as neural signals associated with velocity are reciprocally
woven into neural circuits that control motivated behavior (32-34).
What has been identified as “speed modulation” in this report, and
likely in others, could also be considered a motivation signal
modulating activity, or simply “drift,” i.e., slow changes in activity
patterns over time. In terms of functionally characterizing sources
of variability in the system, such a distinction may not be impor-
tant, because speed, time, and motivation are correlated. However,
if the goal is to identify underlying physiological mechanisms of the
effect, it should become an important consideration.

A quantitative characterization of drift over time in place field
activity is a much-needed analysis for hippocampal research that
our PTP model would be suited to address. As experimenters
probe physiological circuits by performing manipulations and
recording multiple changes, a baseline characterization of the
volatility is needed to specify the effects caused by the manipu-
lations and separate them from appealing, although ultimately
spurious effects.

Our findings do not contradict suggestions that speed is a
fundamental parameter of hippocampal activity. We found that
the firing rates of the majority of putative fast-spiking inter-
neurons, but not those of slow-spiking interneurons, were posi-
tively modulated by running speed (SI Appendix, Fig. S9). Fast-
spiking interneurons, rather than pyramidal cells or slow-spiking
interneurons, may be responsible for speed control of frequency
of theta oscillation of hippocampal place cells (2, 21, 35, 36) and
entorhinal grid cells (37).

The PTP Model: Uses and Findings. The PTP model we describe here
provides a functional description of the well-established factors
that influence place cell activity: position and theta phase. Position
is an external variable that exists in space, while the theta oscil-
lation is entirely internally generated and propagates in time.
These variables interact dynamically through running speed, which
may exert its own place field-specific influence on activity. The
results of this interaction are not always obvious or intuitive. Our
model can be used in lieu of intuition to inform baseline controls.
Appropriate controls are necessary to ward against interpreting
inherent implications of the position—phase interaction as novel
features of place cell activity. Our model also provides a frame-
work for identifying and incorporating truly novel features into our
collective understanding of hippocampal operations.

The PTP model has allowed us to uncover a few surprising
features of place cell activity. First, the dynamic range of place
cell firing rate is roughly double what is typically measured from
trial-averaged firing rates. Second, running speed affects firing
rate variability due to Poisson randomness and alignment be-
tween theta phase and position, which can produce spurious
correlations between speed and firing rate. Finally, despite the
potential for spurious correlations, there appear to be small
subsets of place fields that show genuine speed modulation.

In general, the PTP model can be used in several ways. First,
key features of place fields can be described quantitatively by
fitting the model with relatively small amounts of place cell data.
Second, realistic place cell data can be generated in simulated
experiments, with conditions and parameters fully controlled by
the experimenter. Simulated place cell data can help explore
theoretical aspects of the hippocampal spatial navigation system,
inform the design of future experiments, and serve as a control in
analyzing real place cell data. Last, hypothetical variations of the
model can be systematically tested to uncover additional features
of the data as demonstrated in Fig. 6.

Model Limitations and Extensions. In formulating our model,

choices were made for the sake of simplicity that may have
neglected some particular specifics of hippocampal physiology.
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For example, formulating phase precession as a linear function
of position (2, 3) ignores previous work that has characterized a
curved “banana”-shaped phase precession (25, 38). Skewness of
place fields, which may emerge with experience (39), is another
interesting feature that is not captured by the symmetric spatial
input function of our model. However, the PTP model can be
amended to accommodate details of such properties, and be a
useful tool for further probing their significance.

Physical stationarity of the place field is a more fundamental
assumption of the PTP model. We define the spatial input
function as an environmental input drive at a particular location
(1). An alternate interpretation is that a place field begins at the
occurrence of the first spike, and the place field peak varies from
trial to trial (5, 6), tying the place field more strongly to theta
phase than to position. This interpretation may be useful in some
contexts, but ours reflects common assumptions in the field that
are arguably more relevant in the context of spatial navigation.

One-dimensional space is another assumption. In its current
instantiation, the PTP model is not directly applicable for 2D
navigation. It is possible to expand the model to 2 dimensions;
however, the exact form of this expansion raises interesting the-
oretical and experimental questions about phase precession in
multiple dimensions. Two opposing hypotheses could include the
following: 1) preferred phase is tied to allocentric space, meaning
the phase precession function would change depending on the
direction of travel; or 2) phase precession is constant, meaning the
preferred phase at one location would be drastically different
depending on the direction of travel, suggesting theta phase is an
egocentric code (25, 40, 41). These 2 hypotheses could be com-
pared in real data using variations of the PTP model, and their
implications for spatial navigation could be explored.

We also use a Poisson noise model to capture stochasticity of
place cell spiking. We capture theta-time-scale fluctuations in
the underlying rate. Pyramidal cells in hippocampus reportedly
spike in bursts (42), which may be explained by an underlying
mechanism faster than the theta modulation. It is possible that
true spiking statistics could be more accurately replicated with
the addition of faster variables or history dependence. The PTP
model could serve as an effective null model to test for the role
and effects of faster spiking properties in place cells.

We also only model single place fields, while real place cells
can have multiple fields within an environment (43, 44). As is,
PTP models for multiple fields could easily be combined along
an expanded position axis. A potentially interesting extension
could involve using optimization to automatically identify place
fields and model them jointly.

The PTP model describes the interaction between position and
theta phase as the primary factors that affect place cell activity. The
interaction of these variables is specific to place cells, yet multiple
variables might have similarly specific interactions that affect firing
rates in other functions and regions of the spatial navigation system
(35, 45-47). We hope our general statistical approach can be used
to promote rigor in the study of spatial navigation and connect
analyses to broader computational frameworks.

Methods

Parametric Model of Place Cell Activity. The model is defined by 3 equations,
where x is the position within the field and @ is the phase of the theta
oscillation:

Spatial input equation:

F(X) = exp(Ay) - exp (%)

Phase modulation equation:
9(6,x) = exp(ky - (cos(6— o (x)) — 1));

Phase precession equation:

McClain et al.
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0o (X) =bg+my(x —Xo)-

The rate is modeled as a product of the spatial input and phase modulation
equations:

r(x,0)="~(x)-9(0, x).

Intuitively, f can be considered a firing rate, with units of hertz. g is a unitless
modulation of f. §p, measured in radians, is the preferred theta phase of g, at
position x. The position variable x, and parameters xo and o, are measured
in arbitrary units normalized across each place field, but can easily be converted
to cm by multiplying by the measured width of the field, as we do throughout
this report for ease of visualization.

The number of spikes k; occurring at position x; and theta phase 6; over
interval dt is modeled as a Poisson probability distribution with mean
Ae=dt-r(xe, 0¢):

llt(' e—i,
p(ke|at) = Tk

The likelihood that a model produced the data were computed as the product
of probability over time:

(=Tlp(kelie)

Our model explained the spiking activity of the majority of place fields better
than simpler iterations of the model (S/ Appendix, Fig. S10). Code, demon-
strations, and example data for the PTP model can be found at https:/
github.com/kmcclain001/ptpModel.

Data. Spiking and local field potential were recorded from dorsal CA1 region
of the hippocampus of rats as they traversed linear tracks [as described by
Tingley and Buzsaki (24)]. Datasets were curated for each place field by
selecting time points while the animal was in each place field. The model
was fit for each field using the data recorded at those time points. The in-
puts to the model consist of 4 time-series variables that are interpolated
to the sampling rate of the local field potential (1,250 Hz): 1) the position of
the rat within the place field, 2) phase of the theta oscillation, 3) speed of
the rat within the place field (only used in explicit speed models), and 4)
binary spike or no spike for each time point. The conclusions of our analyses
are maintained across a reasonable range of sampling frequencies.
Position. Raw position was measured as described by Tingley and Buzsaki (24).
The position on the track was linearized based on the occupancy in 2D (code
included). Trials were partitioned by the starting point and running direction
of the rat. Place fields were defined only within trials from a single partition.
Linearized position was smoothed using a Gaussian convolution kernel and
interpolated cubically to 1,250 Hz. Position within each place field was
normalized on a 0 to 1 scale.

Running speed. Speed of the rat was computed from the raw position mea-
surements as the Euclidean distance in 2D position between frames. Speed
was smoothed with a Gaussian convolution kernel and cubically interpolated
to 1,250 Hz.

Theta phase. To extract the theta oscillation, the local field potential was
filtered using a fourth order 4- to 15-Hz bandpass Butterworth filter. Due to
speed-dependent asymmetry in the theta oscillation waveform (48), the
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phase within each cycle was defined by the latency between peaks in the
signal and linearly interpolated from 0 to 2r between consecutive peaks.

Raw data are available at https:/buzsakilab.com/wp/datasets/. Preprocessing
scripts as well as a list of experimental sessions used in this study can be found
at https:/github.com/kmcclain001/dataProcessing.

Model Fitting. Models were fit to data from each place field independently.
Each time point corresponded to a datapoint with a position, theta phase,
running speed, and spike/no spike value. For each fit, parameters were es-
timated using a training dataset. A multistart fitting procedure was used with
5 randomly chosen initial points to mitigate the effects of local minima in the
optimization. The fmincon function in Matlab was used to perform the
optimization, constrained by reasonable parameter ranges (exact values can
be found in code). If the parameter estimates did not converge 5 times, a field
was discarded, which was the case for 80 fields.

Parameter Estimation. To assess the stability of the parameter estimates for
each field, the model was fit 10 times. For each fit, 90% of the data points for
that field were randomly chosen to make the training dataset (S/ Appendix,
Fig. S1). The repeated fitting provided a distribution of parameter estimates
for each field (SI Appendix, Fig. S2). The median value for each parameter
was chosen as the estimate for each field.

Model Comparison. To compare the performance of competing models (Fig. 6
and S/ Appendix, Fig. S10), Monte Carlo cross-validation with averaging was
used (49). Data were split 10 times, and each model was cross-validated by
fitting on 75% of the data, and then testing on the remaining 25%. The
mean log-likelihood for each model was computed, and the model with the
highest log-likelihood was chosen. Cross-validation allowed us to make a
valid comparison across models with different numbers of parameters.

Neuron Classification. Waveforms were clustered as described by Tingley and
Buzsaki (24). Putative cell types for each cluster were identified by 4 factors:
firing rate, integral of the second half of the mean waveform, and the rising
slope and falling slope of the autocorrelogram fit with a double-exponential
function. These 4 features were grouped using k-means clustering with 15
clusters. These clusters were merged manually into putative interneurons
and putative pyramidal cells.

Place Field Identification. Place fields were identified based on the firing rate
of pyramidal cells (3). The mean firing rate as a function of position was
computed for each cell in each trial condition. Regions on the track where
the firing rate was above 20% of the peak were isolated (44). The length of
these regions had to be longer than ~1/15th the length of the track and
smaller than five-eighths the length of the track. The place cell also had to
spike at least once while the subject was in the field on at least four-fifths of
the trials.
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