
Article
Preexisting hippocampal n
etwork dynamics
constrain optogenetically induced place fields
Highlights
d mLED optogenetic stimulation induces remapping in CA1

neurons

d Stimulated and non-stimulated neurons show comparable

place field reorganization

d Fields emerge in places with weak preexisting drive, not at

site of depolarization

d Stimulation changes coupling between pyramidal cells and

neighboring interneurons
McKenzie et al., 2021, Neuron 109, 1040–1054
March 17, 2021 ª 2021 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2021.01.011
Authors

Sam McKenzie, Roman Huszár,

Daniel F. English, Kanghwan Kim,

Fletcher Christensen, Euisik Yoon,

György Buzsáki
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SUMMARY
Memory models often emphasize the need to encode novel patterns of neural activity imposed by sensory
drive. Prior learning and innate architecture likely restrict neural plasticity, however. Here, we test how the
incorporation of synthetic hippocampal signals is constrained by preexisting circuit dynamics. We optoge-
netically stimulated small groups of CA1 neurons as mice traversed a chosen segment of a linear track,
mimicking the emergence of place fields. Stimulation induced persistent place field remapping in stimulated
and non-stimulated neurons. The emergence of place fields could be predicted from sporadic firing in the
new place field location and the temporal relationship to peer neurons before the optogenetic perturbation.
Circuit modification was reflected by altered spike transmission between connected pyramidal cells and
inhibitory interneurons, which persisted during post-experience sleep. We hypothesize that optogenetic
perturbation unmasked sub-threshold place fields. Plasticity in recurrent/lateral inhibition may drive learning
through the rapid association of existing states.
INTRODUCTION

Neural systems face a fundamental tension betweenmaintaining

existing structure and changing to accommodate new informa-

tion. Several potential solutions have been raised to deal with

this stability-plasticity dilemma. At one extreme, novel patterns

of neural activity are imposed solely by ‘‘outside-in’’ sensory

drive. In such models, the storage of these new activity patterns

occurs through synaptic plasticity, a process which potentially

interferes with the stability of previously stored knowledge (Bitt-

ner et al., 2017; Carrillo-Reid et al., 2016; McClelland, 2013). At

the other extreme, neuronal circuits could generate andmaintain

a preconfigured stable dynamic, sometimes referred to as an at-

tractor, a manifold, or a neural schema (Hopfield, 1982; McKen-

zie et al., 2014; Tse et al., 2007), with a large reservoir of patterns

available for matching with novel experiences (Battaglia et al.,

2005; Dragoi and Tonegawa, 2011; Edelman, 1993; Golub

et al., 2018; Luczak et al., 2009; Mizuseki and Buzsáki, 2013).

Where biological memory systems fall along this ‘‘inside-out/

outside-in’’ continuum is a subject of debate.
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The hippocampus is thought to contribute to episodic memory

through rapid association of the constellation of sensory inputs

that define a moment (Alme et al., 2014; Hasselmo and Wyble,

1997; Kumaran and McClelland, 2012; Liu et al., 2013; McNaugh-

ton andNadel, 1990; Rolls, 1990; Tayler et al., 2013). According to

this learning framework, the pattern of hippocampal neurons

active at the time of learning generates an index for that episode

(Teyler and DiScenna, 1986) and effectively binds the cortical re-

gions carrying the multimodal episodic content (Tanaka et al.,

2014). In support ofmodels emphasizing rapid encoding of inputs,

when single neurons are depolarized in a predetermined spatial

position, robust firing persists in that location in the absence of

external drive (Bittner et al., 2015, 2017; Diamantaki et al., 2016,

2018). This new spatial ‘‘code’’ is thought to be due to the associ-

ation of that neuron with excitatory afferent signals naturally tuned

to the stimulated location (Bittner et al., 2017; Dragoi et al., 2003),

thus suggesting that any hippocampal neuron can be associated

with any spatial location.

Neural communication in general, and the hippocampal index

model in particular (Buzsáki and Tingley, 2018; Teyler and
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Figure 1. Location-specific optogenetic depolarization drives neural activity within a 125 mm radius

(A) Schematic of a single shank from a mLED silicon probe.

(B) Left: mice (CaMKIIa – Cre::Ai32) ran laps on a linear track (1.2 m), receiving water reward at each end. Breaking an infrared beam (triangle) triggered 1-s half-

sine blue light via mLED probes implanted in area CA1. Right: the mean velocity of mice passing through the stimulation site before (red) and during (blue) op-

togenetic perturbation. Black bar indicates significant difference at p < 0.01.

(C) Example sweep showing that light delivery drove pyramidal (PYR) cells (rows = neurons) on the stimulated shank (Sh3). Smoothed multi-unit activity plotted

above raster (blue = neurons on Sh3, black = neurons on Sh4).

(D) Left: mean firing rate change of PYR cells recorded on the stimulated shank (blue, n = 631 cells) and non-stimulated shanks (red, n = 529 cells) around

stimulation, relative to expected firing at that position. Bar indicates p < 0.001 comparing firing rate on stimulated versus non-stimulated shanks. Right: dis-

tribution of observed firing rate changes across neurons. Dashed line, no change. ***p < 0.001 comparing change in rate from zero.

(E) For each neuron recorded on the stimulated shank (left) and non-stimulated shanks (right), the evoked firing rate as a function of the expected rate in that

location based off pre-stim firing fields.

(F) Same analysis as (D), for interneurons (INTs).

(G) The mean excitatory:inhibitory ratio (E:I ratio) across sessions increases during stimulation. Bar indicates p < 0.001 comparing E:I ratio post-stimulation to the

median E:I during the 2 s before stim.

Shaded error bars show S.E.M. See also Figures S1 and S2.
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DiScenna, 1986), are thought to depend upon the synchronous

activity of groups of neurons. Little is known about how preexist-

ing connectivity and self-organized dynamics affect the encod-

ing of novel experiences. Here, we address these problems by

pairing focal optogenetic stimulation of small groups of CA1 py-

ramidal (PYR) neurons with a segment of familiar space. Stimu-

lation induced persistent place field remapping. Novel place

fields emerged in both stimulated and non-stimulated neurons,

and could appear outside the stimulation zone. The new place

field location could be predicted by the correlation structure of

neural activity before the optogenetic perturbation, suggesting

that the incorporation of arbitrary signals was constrained by

preexisting circuit dynamics. Circuit modification was reflected

by altered coupling between connected PYR cell-inhibitory inter-

neuron (INT) pairs and by changes in ‘‘synapsembles’’ (Buzsáki,

2010), which persisted during post-experience sleep. We hy-

pothesize that optogenetic perturbation caused plasticity in

recurrent/lateral inhibition to convert sub-threshold inputs into

bona fide place fields.
RESULTS

Microscopic light-emitting diode (mLED) stimulation
drives spiking in nearby CA1 PYR cells and INTs
The postulated ability of hippocampal circuits to imprint a

random, novel pattern (Rolls, 1990) was tested in transgenic

mice in which channelrhodopsin2 (ChR2) was expressed in

excitatory PYR neurons (n = 5 CaMKIIa-Cre::Ai32 mice). mLED

silicon probes were implanted in dorsal CA1 to record neural ac-

tivity during sleep and behavior as mice ran on a linear track for a

water reward. Before any stimulation, neurons were recorded for

at least 1 h while mice stayed in their homecage (REST1), fol-

lowed by running laps on a linear track (RUN1), another 1- to

4-h-long recording in the homecage (REST2), and then a final

recording session on the track (RUN2) to test long-term place

field stability. Stimulation was achieved through mLED illumina-

tion (Figures 1A and S1; Wu et al., 2015), which was delivered

asmice ran on a linear track (1.2m) for awater reward (Figure 1B).

After 10 baseline trials (pre-stim), stimulation (stim = 1 s half-sine
Neuron 109, 1040–1054, March 17, 2021 1041



ll
Article
wave) was given for 2–10 trials (see Table S1) at a fixed position

and running direction that changed daily. Immediately following

stimulation, at least another 10 trials were given (post-stim) to

test place field stability. During ‘‘control’’ sessions, identical

test conditions were given; however, no mLED stimulation was

provided on the linear track. During stimulation sessions, mLED

optogenetic stimulation induced highly focal drive in CA1 PYR

neurons recorded on the stimulated shank (Figures 1C–1E and

S1; n = 631; median increase above expected rate = 4.67 ±

0.37 Hz, Wilcoxon signed rank test p < 10�78; effect size =

1.14, 95% highest density interval (HDI) effect size that excludes

0; 84.0% neurons on stimulated shank numerically increased

rate above expected baseline). Induced firing was calibrated,

before track running, to be within the physiological range nor-

mally seen at the center of a place field (McClain et al., 2019).

PYR cells on the neighboring shanks (R250 mm away; n = 529)

showed a small but significant decrease in expected firing (Fig-

ures 1C–1E; median rate difference = 0.02 ± 0.09 Hz, Wilcoxon

signed rank test p < 10�14; effect size = 0.29, 95% HDI effect

size that excludes 0; 61.2% PYR cells on non-stimulated shank

numerically decreased rate below expected baseline). The small

decrease in the non-stimulated shankswas potentially due to the

recruitment of local lateral inhibition. Inhibitory INTs recorded on

the stimulated shank were also driven (Figure 1F; n = 126; me-

dian rate difference = 2.29 ± 2.83 Hz, Wilcoxon signed rank

test p < 10�5; effect size = 0.60, 95% HDI effect size that ex-

cludes 0; 69.1% INTs on stimulated shank numerically increased

rate above expected baseline), likely through monosynaptic

drive from the optogenetically stimulated PYR cells (English

et al., 2017). The overall increase in excitatory firing was higher

than that observed for inhibitory cells. Considering the multi-

unit activity of all recorded PYR cells and all INTs, the excitator-

y:inhibitory (E:I) ratio increased transiently during stimulation

before returning to baseline (Figure 1G). As shown by previous

studies (English et al., 2017; Stark et al., 2015), we found that

focal optogenetic stimulation engaged small networks of PYR

cells and INTs during track running.

Focal optogenetic stimulation induces partial
remapping of place fields
We next tested for the stability of optogenetically induced place

fields (Rickgauer et al., 2014; Stark et al., 2012). In contrast to

prior studies that manipulated single neurons with current injec-

tion (Bittner et al., 2015, 2017; Diamantaki et al., 2016, 2018;

Zhao et al., 2020), we found that novel place fields emerged

and disappeared both within and outside the stimulation zone

(Figures 2 and S2). Furthermore, for CA1 neurons that remapped

(see STAR methods), the locations of the place fields post-stim-

ulation were not clustered around the stimulation zone on the

track (Figures 2C–2F), showing a reorganization of the place rep-

resentation, at least within the small volume of the recorded CA1

circuit.

Two approaches were taken to quantify the illustrated remap-

ping. The log-likelihood (LL) of an observed spike train was as-

sessed given two conditional intensity functions—one derived

from that neuron’s place field recorded before stimulation trials

(pre-template LL) and another from place fields recorded after

the last stimulation trial (post-template LL). The degree to which
1042 Neuron 109, 1040–1054, March 17, 2021
the LLs differed, the LL ratio (post-template LL–pre-template LL;

Harris et al., 2003), was used to quantify remapping. Using this

LL ratio metric, spatial tuning of neurons recorded on both stimu-

lated and non-stimulated shanks (neighboring shanks for which

the mLEDwas not activated) showed greater reorganization imme-

diately after the stimulation trials as compared to the spatial tuning

observed during control sessions that lacked track stimulation

(stim versus control: Mann-Whitney U test, p < 10�6, effect size =

0.37, 95%HDI effect size that excludes 0; non-stim versus control:

Mann-Whitney U test, p < 10�7, effect size = 0.40, 95% HDI); re-

mapping did not differ between stimulated and non-stimulated

shanks on stimulation sessions (Figures 3A and 3B). Similar results

were obtainedwith a different remappingmetric that uses Pearson

correlation to compare trial-by-trial rate maps with the average

place fieldmaps recorded before and after stimulation (Figure S3).

Trial-by-trial estimates of place field drift also revealed greater re-

mapping after optogenetic stimulation, regardless of whether the

trials were separated by short or long intervals (Figure S3).

The LL approach provides a moment-to-moment estimate of

whether the observed spike train is better described by the

pre- or post-stimulation fire rate maps. We used this metric to

quantify how quickly new spatial firing fields emerged after stim-

ulation. For stimulated neurons that remapped (n = 84, 12.3% of

all stimulated PYR cells; see STAR methods for remapping

criteria), the spiking immediately after stimulation was better pre-

dicted by post-stim place fields (Figure 3C), suggesting that the

place fields in these neurons emerged immediately. However,

spiking of simultaneously recorded remapping neurons on the

non-stimulated shanks (n = 44, 10.3% of all non-stimulated

PYR cells) was equally well described by the pre- and post-stim-

ulation place fields (Figure 3C) in the moments around stimula-

tion, suggesting a distinct, slower process driving this firing field

reorganization.

For those neurons that remapped, post-stimulation place

fields signaled more spatial information (median information

score = 4.94 ± 0.12 bits) than simultaneously recorded neurons

with stable fields (median information score = 4.53 ± 0.10 bits;

Mann-Whitney U test, p = 0.002; effect size = 0.35, 95% HDI

effect size that excludes 0), and comparable information as neu-

rons recorded in control sessions (median information score =

5.09 ± 0.17 bits, Mann-Whitney U test, p = 0.49). Consistent

with this observation, Bayesian decoding of the position of the

animal during pre-stimulation trials using pre-stimulation place

fields (median decoding error = 15.1 ± 0.92 cm) was as accurate

as location decoding during post-stimulation trials using post-

stimulation place fields (median decoding error = 15.4 ±

1.0 cm; n = 27 sessions, Mann-Whitney U test, p = 0.87).

A second recording session (RUN2) revealed that the remap-

ping could be stable after 1–4 h in the homecage (Figures 1C

and 3D). Cells that remapped showed post-stimulation place

fields that weremore similar to those recorded during the second

recording session (median corrPOSTvsRUN2 = 0.59 ± 0.03) than to

those place fields recorded pre-stimulation (Mann-Whitney U

test corrPREvsRUN2 versus corrPOSTvsRUN2, p = 0.0003; effect

size = 0.40, 95% HDI that excludes 0), despite the shorter time

difference between the first and last stimulations (median =

6 min), as compared to the interval between RUN1 and RUN2

(median = 3 h 7 min). This stability after the homecage interval
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Figure 2. Optogenetically induced place cell remapping is confined neither to stimulated neurons nor the stimulation zone

(A) Stimulation-induced place field remapping after focal light delivery (light blue). Arrows show running direction. RUN1 and RUN2 sessions are separated by a

horizontal red line. (1) Novel place field near the stimulation site. (2) Rate reduction of spiking within an existing place field and induction of a novel place field at a

non-stimulated site. (3) Induced novel place field at stimulation location and persistence of an existing place field. (4) Induction of a novel place field observed on

inbound runs, despite stimulation delivered during outbound traversals.

(B) All place fields for an example stimulation session before (dashed) and after (solid) optogenetic stimulation. The trianglemarks stimulation location. In the same

session, some neurons shifted fields, some showed rate decreases, and some showed rate increases. Place field marked ‘‘1’’ is the same as that shown in (A1).

(C) Normalized place fields for all remapping neurons recorded on the stimulated and non-stimulated shanks. Place fields are centered on the stimulation location

and plotted using spikes recorded before stimulation (pre), during stimulation trials (stim), directly after stimulation (post), and during a follow-up track session

after homecage recordings (RUN2). Place fields sorted by post-stim peak firing location.

(D) Mean firing rate of stimulated neurons within (blue) and outside (red) of the stimulation site before, during (between dashed lines), and after stimulation trials.

Bar indicates p < 0.001 comparing firing rate on stimulated location versus the median rate in non-stimulated locations.

(E) Same as (D) for neurons recorded on the non-stimulated shank.

(F) Place field location recorded before stimulation versus the post-stim location for remapping (blue) neurons. The distribution of place field centers pre- and

post-stim are shown for the remapping neurons (blue) and the stable (black) neurons for reference. Place field locations are centered on the stim location. Note

that place fields could remap to any location on the track and that there was no post-stim overrepresentation of the stimulation site.

Shaded error bars show S.E.M. See also Figure S2.

ll
Article
suggests that the observed remapping was not due to drift in

place field coding or systematic recording instability. However,

remapped place fields were not as stable as those observed in

control sessions (median corrPOSTvsRUN2 = 0.75 ± 0.03; Mann-

Whitney U test corrPREvsRUN2 versus corrPOSTvsRUN2, p < 10�5;

effect size = 0.63, 95% HDI that excludes 0). We also found no

difference in spike sorting quality between the remapping and

non-remapping sub-populations, as measured by the L-ratio

(p = 0.85) and isolation distance (Mann-Whitney U test p =

0.24). These results show moderate long-term stability of opto-

genetically induced remapping in CA1, which was less stable

than that observed during control sessions.
Next, we examined potential physiological features that

would reveal insights into why some neurons remapped and

others did not. Comparing stimulated remapping cells versus

stable cells, we did not find any differences in the radial position

of the neuron (i.e., deep versus superficial, p = 0.23), nor in over-

all firing rate or burstiness during pre-rest or pre-stim RUN pe-

riods (Figure 3E, all p > 0.20). Remapping neurons recorded

tended to fire at a higher rate during stimulation and during sub-

sequent post-stim RUN trials (Figures 3D, 3E, and S3). Higher

firing persisted during REST2 and was marginally higher during

RUN2 (Figures 3D and 3E). Therefore, remapping was preferen-

tially observed in neurons that responded to light with early
Neuron 109, 1040–1054, March 17, 2021 1043
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Figure 3. Focal optogenetic depolarization induces rapid remapping and persistent rate changes

(A) Remapping was quantified as the log-likelihood (LL) difference between 2models of single-cell spiking: one based on place fields recorded before stimulation

(pre-template), and another based on post-stimulation place fields (post-template). The difference in LLs after stimulation gives gain/loss of information (bit/s)

carried by the spike train about the post-stimulation place fields relative to pre-stimulation. Comparisons are made between neurons recorded on the stimulated

shank and non-stimulated (neighboring) shanks in optogenetic sessions and identical control sessions without optogenetic stimulation.

(B) The summed post-stimulation LL ratio (post–pre) was calculated for each neuron. The cumulative distribution of LL ratios is given for neurons recorded on the

stimulated shank (blue), non-stimulated shanks (black), and in control sessions (red). Boxplots show descriptive summaries for each group.

(C) Themean ± SEM cumulative sum of the LL differences centered on stimulation for remapping cells. Soon after stimulation (400ms), neurons on the stimulated

shank began to show spiking that was more consistent with post-stimulation place fields. Black bar indicates p < 0.01 comparing stimulated shank versus non-

stim shank. Red bar indicates p < 0.01 comparing stimulated shank versus control.

(D) The place field stability (Pearson r) for remapping cells. Post-stim rate maps were more similar to RUN2 than the pre-stim rates.

(E) The firing rates for remapping and stable cells during different segments of stimulation sessions. Remapping cells showed higher induced rates and higher

rates in all post-stimulation epochs compared to stable cells.

(F) The subset of neurons on the stimulated shank that remapped (pink) showed higher firing rates and shorter latencies to spike after stimulation (inset), as

compared to stimulated neurons that maintained stable spatial firing fields (purple). Rate differences are calculated relative to the expected firing rates at those

times given the pre-stim place fields. Bar indicates p < 0.01 comparing firing rate of remapping versus stable cells.

#p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, n.s., non-significant. Shaded error bars, SEM.

See also Figure S3.
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spiking and a high firing rate, while relative stability was

observed in neighboring neurons.

Prior studies have found that back-propagating action poten-

tials and dendritic plateau potentials cause new place fields to

emerge in the position in which those strong dendritic events

occurred (Bittner et al., 2015, 2017; Milstein et al., 2020). It is

possible that the complex spike burst is an extracellular correlate

of the plateau potential. We found that the first pass through a

new place field (first trial with >3 Hz firing) was associated with

bursting (spikes with �5-ms inter-spike interval; Figure S3F), a

defining feature of a complex spike burst, although bursts were

not more prominent in the first trial (12.2% ± 0.02% spikes in a

burst) as compared to later trials (11.1% ± 0.01% spikes in a

burst), irrespective of the rate threshold used to define the first
1044 Neuron 109, 1040–1054, March 17, 2021
place field pass. The geometry of the implanted silicon probes

(Figure 1A) also allowed for an analysis of the backpropagating

spikes over the radial axis of CA1, albeit to a limited extent

(<200 mm). We therefore tested whether the spikes that ap-

peared on the first pass of a new place field differed from the

mean waveform recorded for each unit in which a new field

emerged. This analysis revealed no differences in spike

waveforms (Figure S3). However, because of the limitations in

detecting spike features from more distal apical dendrites with

extracellular methods, these results do not exclude the possibil-

ity of important distal dendritic events. We next tested whether

the running speed on the first trial predicted subsequent place

field width (width at half the peak firing rate), as has been

observed with spontaneous and artificial plateau potentials
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(Bittner et al., 2017). We found no correlation (Pearson correla-

tion coefficient = 0.10, p = 0.27) between first trial running speed

and subsequent place field width, irrespective of the firing rate

criteria used to define a new field (1–10 Hz tested).

Pre-stimulation dynamics predict post-stimulation
remapping
Since place fields did not emerge preferentially around the stimu-

lation site on the track, we next examined whether any systematic

firing patterns can explain the findings.We testedwhether, before

stimulation, neurons fireddifferently in the location thatwould later

become the center of the remapped place field. During pre-stim

trials, firing rates in the future place field were already elevated

relative to the median rate recorded outside the future place field

for both neurons on the stimulated shank (Figures 4A and 4C)

(n = 84, Mann-Whitney U test, p < 0.05 from trials 2–10; effect

size 0.41–0.7, 95% HDI that excludes 0), and those recorded on

the non-stimulated shanks (Figures 4B and 4C) (n = 42 neurons,

Mann-Whitney U test, p < 0.05 from trials 8–10; effect size 0.39–

0.53, 95% HDI that excludes 0), even if such sporadic spiking

did not translate to a quantitatively detectable place field. The pre-

existing elevated spiking suggested that remapping unveiled the

presence of preexisting weak drive to these neurons at the loca-

tion of the future place field.

Next, we tested whether we could invert the analysis and pre-

dict where the place field would be located given the trial-by-trial

pattern within and outside the future place field. Since the major-

ity of data recorded before stimulation occurred outside the new

place field, the classification labels (‘‘future field pattern’’ versus

‘‘not future field pattern’’) were heavily unbalanced. To confront

this issue, we adopted the RUSBoost binary classification algo-

rithm (Seiffert et al., 2008) to predict whether each location would

become a new place field based on a feature space defined by

the trial-by-trial firing rate of each neuron within that location,

and the proportion of spikes emitted in bursts (inter-spike inter-

val [ISI] <7 ms) in that location. Half of the pre-stimulation trials

were used to train the classifier, which was able to classify

whether spiking patterns occurred in a future place field signifi-

cantly better than chance in 78.9% of remapping neurons (Fig-

ure 4D). When only firing rate or only the percentage of spikes

in a burst were used to classify location as future place fields,

the firing rate-only model was associated with a significantly

higher positive likelihood ratio (hit/false positive; paired Mann-

Whitney U test, p < 10�9). As expected, some neurons showed

much higher classification performance than others, given the

moderate effect size of the pre-stimulation firing rate in predict-

ing place field location.

Previous studies have reported that the pattern of spiking activ-

ity before a first-time experience is predictive of the future spatial

layout of place fields in novel environments (Dragoi and Tone-

gawa, 2011; Farooq and Dragoi, 2019; Grosmark and Buzsáki,

2016). If new place fields in the current experiment were con-

strained by preexisting dynamics, then we reasoned that sponta-

neous activity during immobility/sleep in the homecage before

track running would be predictive of how neurons remapwith arti-

ficial stimulation. We adopted a generalized linear modeling

approach in which the spiking of a target neuron was predicted

by a conditional intensity function defined by the weighted sum
of the activity of neighboringPYRcells (Figure 4E) (called peer pre-

diction) (Harris et al., 2003). We tested whether this method could

reveal evidence of dormant place fields before stimulation, in

which higher peer prediction weights are expected for those neu-

rons that have overlapping place fields. As hypothesized, neurons

with nearby place fields (peaks within 5 cm) showed higher peer

prediction weights during REST1 (n = 7,770 pairs, median predic-

tion weight = 0.27 ± 0.01) as compared to pairs of neurons whose

fields were further apart (Figure 4F) (n = 64,836 pairs; median pre-

diction weight = 0.23 ± 0.003, Mann-Whitney U test, p < 10�9 at

30-ms temporal bin; effect size = 0.13, 95% HDI that excludes

0). Next, we tested whether higher peer prediction weights (using

REST1 data) were also observed for pairs of cells in which one, or

both, remapped such that the post-stim place fields were nearby.

As was observed for the relationship between peer prediction

weights and pre-stim place fields, prediction weights were also

significantly higher for pairs of neurons that remapped to nearby

locations (Figure 4G) (n = 200 pairs; median = 0.19 ± 0.007), as

compared to neurons that remapped but had place fields >5 cm

apart (n = 2,098 pairs; median = 0.11 ± 0.01; Mann-Whitney U

test, p < 10�5; effect size = 0.20, 90%HDI that excludes 0). These

results suggest that preexisting circuit dynamics that constrain

neuronal activity patternsduring sleep also bias place field remap-

ping by optogenetic perturbation.

Optogenetic stimulation changes INT and PYR cell firing
patterns during post-RUN sharp-wave ripples
Because hippocampal sharp wave ripples (SPW-R; Figure S1B)

are believed to play a key role in circuit plasticity (Buzsáki, 2015),

we tested whether the optogenetic induction of place fields are

related to changes in neuronal participation in SPW-Rs from

REST1 to REST2 and whether these changes differ from those

seen in control sessions in which light stimulation was not given.

Stimulated PYR neurons showed slightly higher rate increases

within ripples as compared to changes seen in neurons

(n = 291) recorded in control sessions (p = 0.02; effect size =

0.13, 95% HDI that excludes 0) but not from neurons recorded

on non-stimulated shanks (Figure 5A; n = 220; Mann-Whitney

U test, p = 0.46; effect size = 0.04). In contrast, INTs driven syn-

aptically on the stimulated shank (n = 63 interneurons) showed a

larger increase in SPW-R recruitment as compared to those

(n = 77 interneurons) recorded on the non-stimulated shank (Fig-

ures 5B–5D) (Mann-Whitney U test, p = 0.005; effect size = 0.49,

95%HDI that excludes 0), and compared to control sessions (n =

70 sessions; Mann-Whitney U test, p = 0.005; effect size = 0.45,

95% HDI that excludes 0).

Typically, INT firing is excluded from SPW-R replay analyses.

Therefore, we tested whether INTs that are naturally recruited

during the running task persist in their firing during the following

homecage recording session. We also tested PYR cell reactiva-

tion as a positive control. Since INTs lack well-defined firing

fields, and typically have higher rates overall, we focused on

the firing observed during waking SPW-Rs recorded on the

track. As expected, CA1 PYR cells that were more strongly

recruited into waking SPW-Rs (n = 703 neurons, threshold for

ripple recruitment = 2.5 Hz, derived from median split of waking

ripple activity for stim and control sessions) showed an increase

in firing from REST1 to REST2 (Figure 5E) (paired Mann-Whitney
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Figure 4. Relationship between pre-stimulation neural activity and post-stimulation remapping

(A) For remapping neurons recorded on the stimulated shank, the median firing rate in the center of the induced place field (blue) was already higher before

optogenetic stimulation than in other regions of the track (red).

(B) Firing rate in the future place field before stimulation was also higher for neurons recorded on the non-stimulated shank. In-field versus out-of-field rate: #p <

0.1, *p < 0.05, **p < 0.01.

(C) The distribution across remapping neurons of the difference-over-sum of the in-future-field firing rates versus the out-of-field firing rates measured before

stimulation. In-future-field rates were defined as spikesmeasuredwhen themousewas ±5 cm around the future place field peak; out-of-field rates were themean

firing rates measured at all of the other locations on the track.

(D) The classification performance of the RUSBoost algorithm across neurons (points = neuron) to predict whether the pattern of neural activity in a given place on

a given trial was recorded in the location of the future place field, or within another location on the track. Classifier performance compared against place-

shuffled data.

(E) Method for relating pre-stimulation activity to subsequent place field distribution. Using data recorded during REST1, the binned firing rate of each target cell

(ft) was predicted using the weighted (wa) binned rate (sta) of other simultaneously recorded PYR cells. These weights were then related to the distance between

place fields of the target cell and each peer predictor.

(F) Left: on average, for all pairs of neurons with overlapping pre-stimulation place fields (peaks within 5 cm), higher peer prediction weights were observed during

REST1 as compared to pairs whose fields were further apart (spikes binned at 44ms). Right: higher peer prediction strengths for PYR pairs with overlapping place

fields were observed across a range of binning timescales. Bar indicates p < 0.01 comparing peer prediction weights for pairs of neurons with overlapping versus

non-overlapping place fields. Inset, difference between peer prediction weights for neurons with overlapping versus non-overlapping place fields at each

time bin.

(G) Same as (D), although comparing post-stimulation place fields and limiting the analysis to only neuron pairs in which either the target or peer predictor re-

mapped. Shaded error bars, SEMs.
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Figure 5. Optogenetic stimulation alters PYR cell and INT firing during ripple events

(A) PYR cells recorded on the stimulated shank (blue) did not show a change in ripple recruitment, REST1 versus REST2, any more than simultaneously recorded

non-stimulated neurons (black), and marginally (p = 0.02) more than those recorded in control sessions (red).

(B) Unlike directly stimulated PYR cells, INTs recorded on the stimulated shank showed increased ripple recruitment during REST2 SPW-Rs.

(C and D) Normalized peri-ripple time histograms for INTs recorded on the stimulated (C) and non-stimulated shanks (D). INTs are sorted by ripple-associated

firing rate change.

(E) PYR cells that fired during waking ripples on the track (purple, upper 50%) showed greater gain in ripple participation (comparing ripple-related spiking during

REST1 and REST2 in the homecage; median ± SEM) compared to those that participated less during waking ripples (black, lower 50%). Inset: rate changes

during ripples.

(F) INTs that fired more often during waking ripples on the track showed high gain in ripple participation from pre-RUN to post-RUN rest/sleep.

(G) The pairwise ripple co-modulation during REST1 was strongly correlated with REST2 ripple co-modulation (Pearson r = 0.42, p = 2.1�265).

(H) The distance between post-stimulation place fields is correlated with the pairwise correlation in ripple activity for ripples recorded both before and after track

running. Only pairs of neurons with fields within 20 cm showed a significant (p = 0.007) gain in ripple co-modulation.

*p < 0.05, **p < 0.01, ***p < 0.001. Shaded error bars, SEMs.
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U test, p < 10�8; effect size = 0.18, 95% HDI that excludes 0).

This increase was greater than that observed for PYR cells (n =

672 neurons) that were less recruited into waking SPW-R (Fig-

ure 5E; unpaired Mann-Whitney U test, p < 10�5; effect size =

0.21, 95% HDI). Similarly, INTs that fired more during waking

SPW-R (n = 127 interneurons; threshold for ripple recruitment =

15.8 Hz) also showed a REST2 versus REST1 gain in homecage

SPW-R firing (Figure 5F; paired Mann-Whitney U test, p =

0.0002; effect size = 0.44, 95% HDI that excludes 0), which

was greater than that observed in INTs that were only weakly re-

cruited during waking SPW-R (Figure 5F; n = 119 interneurons;

unpaired Mann-Whitney U test, p = 0.003; effect size = 0.34,

95% HDI that excludes 0). Therefore, the synaptic drive of

INTs during both optogenetic stimulation and natural drive dur-

ing waking SPW-Rs was predictive of subsequent sleep SPW-

R recruitment.

In addition, we tested for the reactivation of the optogeneti-

cally induced remapped spatial representations. We focused

on those same pairs in which one or both neurons shifted place

fields after stimulations. The degree of co-fluctuation (Spearman

r) during SPW-Rs before track running strongly correlated with

co-fluctuations after stimulation (Figure 5G; REST2 versus

REST1 co-fluctuation, Pearson r = 0.42, p < 10�265). To factor
out this significant baseline stability, multiple regression analysis

was used to measure how the distance between post-stimula-

tion place fields predicted REST2 SPW-R coupling, accounting

for the REST1 baseline. The absolute distance between place

fields post-stimulation negatively correlated with co-activity dur-

ing post-RUN SPW-R (Figure 5H; t-stat = �3.08, p = 0.002),

showing enhanced SPW-R coupling for neurons whose place

fields were nearby after optogenetically induced remapping.

The degree of co-fluctuation (Spearman R) during SPW-Rs

before track running also negatively correlated with the dis-

tances between post-stimulation place fields (Figure 5H; t-

stat = �3.6, p = 0.001). These results held even after regressing

out the distance between place fields pre-stimulation (t-stat =

�2.7, p = 0.007). Our results are consistent with the peer predic-

tion analysis showing that neurons with nearby post-stim place

fields have preexisting stronger correlations before track

stimulation.

These results demonstrate that the optogenetic perturbation

can induce long-lasting changes in both PYR cell and INT firing

during post-RUN SPW-Rs. Overall, these findings are consistent

with the observation that the sequential order of place fields in

both novel experiences (Dragoi and Tonegawa, 2011) and after

artificial perturbation predicts prior internal circuit dynamics.
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Figure 6. Optogenetic stimulation reorganized spike transmission between PYR cells and INTs
(A) Top, spike transmission (Hz) between an example PYR-INT pair reflecting a GLM-based estimate of the increase in postsynaptic rate due to the presynaptic

spikes (see STARmethods). Bottom, observed and GLM-predicted cross-correlograms for the example PYR-INT pair, computed in 50-min homecage rest/sleep

sessions before and after track running (see STAR methods). Insets highlight the peak at a finer timescale.

(B) Z scored spike transmission time series between 61 PYR-INT pairs in a single session. Black vertical lines, start and end of track running. White line, first

optogenetic stimulation trial. The triangle highlights a recurring spike transmission ensemble.

(C) Time-resolved expression strengths of two PYR-INT spike transmission ensembles (synapsembles, see STAR methods) detected during pre-stim (blue) and

post-stim (red) epochs.

(D) Templates of PYR-INT ensembles detected before optogenetic stimulation.

(E) Mean Z scored spike transmission functional connectivity maps during periods of high ensemble expression (>10) for pre-stim and post-stim synapsembles

shown in (C). PYR cells (red triangles) and INTs (blue circles) are superimposed on the recording sites (white squares) of a 4-shank mLED probe. Some INTs had a

majority of connections that started strong and became weak after stimulation (empty triangle), while others showed the reverse pattern (filled triangle).

(F) Left: stimulation induced larger changes in synapsemble expression (blue, n = 543) than expected from unperturbed control sessions (red, n = 153; p < 0.001;

Mann-Whitney U test). Synapsembles were detected before or after optogenetic stimulation, and the change in synapsemble expression was assessed as the

difference in mean expression strength during time periods surrounding optogenetic stimulation; the halfway point on the track was used in control sessions.

Insets show the same data as whisker plots. Center: the same ensemble analysis was also performed using smoothed firing rates of PYR cells (center; blue,

n = 248; red, n = 83; p = 0.128; Mann-Whitney U test) and INTs (right; blue, n = 101; red, n = 30; p < 0.05; Mann-Whitney U test) that were included in putative

monosynaptic connections. *p < 0.05, ***p < 0.001.

See also Figures S4–S6.
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Optogenetic stimulation alters excitatory / inhibitory
synaptic coupling
We hypothesized that the changes in SPW-R participation in

synaptically activated INTs and the place field remapping,

particularly of non-stimulated cells, was due to a reorganization

of local CA1 circuitry, mainly affecting lateral inhibition. To

explore this hypothesis, we examined spike transmission be-

tween pairs of monosynaptically connected PYR cells and

INTs (PYR-INT) (English et al., 2017; Fujisawa et al., 2008). To

track how spike transmission changed over time, we developed

a generalized linear model (GLM; see STAR methods) to mea-

sure long timescale changes in the influence of the presynaptic

drive to the postsynaptic INT while regressing out changes in

the postsynaptic firing rate (Figures 6A and S4). We found that

putative synaptic coupling strength, as approximated by our

spike transmission measure (see STAR methods), varied
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64.7% ± 0.5% around the mean over the recording session (Fig-

ures 6A, 6B, and S4). These temporal fluctuations were indepen-

dent of the presynaptic rate (Spearman r = 0.0124, p = 0.077, n =

1,771 pairs), but correlated with the postsynaptic rate (r = 0.38,

p < 0.001, n = 1,771 pairs), potentially reflecting a confounding

effect of postsynaptic excitability (Figures S5A and S5B). How-

ever, spike transmissions across neuron pairs sharing the

same postsynaptic INT were only moderately correlated with

each other (r = 0.24, p < 0.001, n = 12,581 convergent pairs),

suggesting that the temporal dynamics of PYR-INT spike trans-

mission cannot be fully explained by firing rate fluctuations of

either presynaptic or postsynaptic neurons alone (Figure S5C).

Spike transmission probability between simultaneously re-

corded PYR-INT pairs tended to co-fluctuate with pairs that

increased and decreased at common moments (Figure 6B). To

quantify how spike transmission across PYR-INT pairs is
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coordinated and changes as a result of optogenetic stimulation,

we extracted patterns of significant coactivity using a combina-

tion of principal- and independent-component analyses (PCA,

ICA) (see STAR methods) to define a vector of weights for the

contribution of each PYR-INT pair to each synaptic state (Fig-

ure S4), referred to here as synapsembles (Buzsáki, 2010) (Fig-

ures 6B–6E). Each synapsemble was detected before or after

stimulation, and its expression strength was tracked throughout

the entire daily session (see STAR methods). Compared to syn-

apsembles in control sessions (n = 153), optogenetic perturba-

tion was associated with significant changes in synapsemble

expression strengths (n = 543, p < 0.001, Mann-Whitney U

test; effect size = 0.44, 95% HDI that excludes 0; Figure 6F).

These results also held when controlling for differences in base-

line synapsemble expression strengths between optogenetic

perturbation and control conditions (Figure S5D).

Based on these analyses, we reasoned that changes in synap-

semble expression ought to be accompanied by changes in cell

ensembles defined by spiking. To investigate this possibility, we

repeated the above analysis for presynaptic PYRs and postsyn-

aptic INTs whose spike trains were smoothed to fluctuate at

timescales equivalent to those of spike transmission (see

STARmethods). While we found no differences in PYR ensemble

expression (p = 0.128, Mann-Whitney U test; Figure 6F), INT en-

sembles were significantly reorganized following optogenetic

stimulation (p = 0.012, Mann-Whitney U test; effect size = 0.48,

95% HDI that excludes 0; Figure 6F).

To further investigate the nature of this plasticity, we tested an

alternative statistical model to capture changes in spike trans-

mission (see STAR methods). In particular, spike transmission

was constrained to fluctuate according to the Tsodyks-Markram

dynamical model for short-term plasticity (Tsodyks and Mark-

ram, 1997), while long-term coupling strengths were held con-

stant. The synapsemble analysis was repeated for this short-

term plasticity model (Ghanbari et al., 2020), and as observed

in the long-term model, synapsembles reorganized more in the

optogenetic stimulation sessions as compared to controls (Fig-

ure S6). Therefore, multiple mechanisms could account for the

observed changes in the coupling of PYR cells to INTs in the mi-

nutes and hours after stimulation.

DISCUSSION

We report that optogenetic activation of a small group of PYR

neurons resulted in the remapping of place fields both at and

away from the stimulation site and in both directly stimulated

and non-stimulated neurons. New place fields tended to

emerge in places already associated with sparse preexisting

activity. In addition, neurons with newly expressed place fields

had preexisting correlated firing with partner cells whose place

fields were co-tuned following optogenetic stimulation. Opto-

genetically induced place field remapping was accompanied

by a reorganization of PYR-INT coupling and altered SPW-R

membership of both PYR cells and INTs, which persisted in

the hours after perturbation. We hypothesize that reorganiza-

tion of hippocampal circuits is both constrained and guided

by preexisting connectivity and internally organized physiolog-

ical states.
Constraints on place field remapping
Interpretations of previous experiments on artificially induced

place fields fall into two extremes. At one end is the assumption

that the association of any arbitrary environmental input with the

appropriate plasticity manipulation in the hippocampus can give

rise to new place fields (omnipotent blank slate model). Interpre-

tations at the other extreme assume that perturbations simply

uncover preexisting or dormant place fields, and the success

of artificial perturbations is, therefore, limited (preconfigured dy-

namic view). In support of the arbitrary place field induction inter-

pretation, studies have shown that single neurons reliably form

new place fields at any position on the running belt where those

cells are injected with strong intracellular current, resulting in a

large dendritic plateau potential (Bittner et al., 2015, 2017).

These experiments (see also Sheffield et al., 2017) gave rise to

a model in which CA1 PYR cells receive inputs from an array of

upstream neurons (presumably in CA3) that represent all parts

of the covered space evenly, and the plateau-related ‘‘instructive

signal’’ is broadcast to all input synapses. Any input that occurs

within a multi-second time window around the plateau potential

can get strengthened, but more so when the synapses are active

before a plateau rather than during or after a plateau (Bittner et

al., 2017; Milstein et al., 2020; Zhao et al., 2020). In support of

the plateau potential experiments, juxtacellular stimulation of

hippocampal PYR neurons (Diamantaki et al., 2018) and granule

cells (Diamantaki et al., 2016) in freely moving subjects also

induced place cell remapping to the stimulation site in a fraction

of cases, especially when stimulation drove intense spiking (Dia-

mantaki et al., 2018).

In contrast, our optogenetic perturbation experiments, along

with previous studies on natural place field dynamics (Dragoi

and Tonegawa, 2011; Grosmark and Buzsáki, 2016; Samsono-

vich and McNaughton, 1997), support the so-called preconfig-

ured framework. Under our experimental conditions, neurons

with induced place fields had dormant place fields and were

weakly associated with preexisting neuronal assemblies. These

relationships were strengthened after optogenetic stimulation,

as was revealed by their gain in SPW-R-related firing. What ap-

peared to be a freshly learned novel place field (i.e., newly added

information to hippocampal circuits) may be more appropriately

described as a matching process between existing internally

organized neuronal trajectories and constellations of external in-

puts (Dragoi and Tonegawa, 2011; Farooq et al., 2019; Guo et al.,

2020; Mizuseki and Buzsáki, 2013; Villette et al., 2015; Buz-

sáki 2010).

Other lines of evidence suggest that new place fields emerge

upon a background of weak prior drive. The first place field

perturbation study used long-term potentiation (LTP) of the

CA3-CA1 Schaffer collaterals under the hypothesis that each

CA1 neuron receives input from an array of CA3 neurons that

covered the available space equally (Dragoi et al., 2003). LTP

perturbation induced novel place fields and made existing place

fields disappear, analogous to plateau potential studies in single

neurons (Milstein et al., 2020). However, new fields tended to

emerge in low firing rate neurons in locations associated with

preexisting dormant activity; strong, existing place fields could

not be modified. In line with these findings, spatially uniform de-

polarization of silent CA1 PYR cells led to the reversible
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emergence of a spatially tuned subthreshold response and place

field spiking (Lee et al., 2012), indicating that a neuron driven by a

preconfigured network in which it is embedded can selectively

match to a particular external event. A related study showed

that in a novel environment, subthreshold fields preexisted in

the locations where place fields subsequently emerged without

prior plateau potentials (Cohen et al., 2017).

Place fields can emerge rapidly in familiar and novel environ-

ments (Frank et al., 2004), precluding a scenario in which recep-

tive fields emerge due to incremental plasticity with repetitive

pairings of pre- and postsynaptic activity (Isaac et al., 2009). A

recent behavioral study made the remarkable observation that

before spontaneous emergence of a novel place field in a familiar

environment, the exploring rat displayed prominent head scan-

ning at that very place on the preceding trial (Monaco et al.,

2014). Although plateau potentials may have occurred during

such head scanning, the authors also found dormant place field

firing before head scanning (their Figure 2), allowing the interpre-

tation that head scanning, like optogenetic perturbation,

strengthened the membership with an assembly that already

signified that place.

There are important differences between our study and others

that have linked plateau potentials to arbitrary remapping. In our

study, groups of neurons were depolarized with focal optoge-

netic stimulation, rather than single neurons driven with strong

intrasomatic current injection. Our optogenetic stimulation

excited and synchronized a small group of PYR cells (an esti-

mated 10–50 neurons by mLED) (Wu et al., 2015) and effectively

discharged local inhibitory cells (English et al., 2017). In turn, the

resulting recruitment of feedback inhibition could have pre-

vented regenerative dendritic depolarization, underlying plateau

potentials (Grienberger et al., 2017; Lovett-Barron et al., 2012;

Sheffield et al., 2017). Single-neuron versus multi-neuron drive

may or may not be important because remapping to the stimula-

tion site was not observed when single CA1 neurons were depo-

larized by holographic two-photon stimulation in a head-fixed

situation (Rickgauer et al., 2014) that was similar to that used

in the plateau potential studies (Bittner et al., 2015, 2017;Milstein

et al., 2020). In all of the optical preparations, targeted stimula-

tion of specific neurons causes the place field remapping in

both the targeted and non-targeted populations, with place

fields appearing at locations not associated with the artificial

drive (Rickgauer et al., 2014; Robinson et al., 2020), similar to

what was observed here and in previous reports (Stark et al.,

2012). Finally, we have observed that a newly induced place field

can persist alongside an existing field of the same neuron, in line

with findings that aminority of PYR neurons can have two ormul-

tiple place fields (Mizuseki and Buzsáki, 2013). In contrast, a

plateau-induced novel place field makes the spiking at the orig-

inal place field disappear (Milstein et al., 2020).

We hypothesize that the magnitude of artificial perturbation in

single neurons may explain the differences among these seem-

ingly contradicting studies. Firing rates and synaptic strengths of

neurons upstream to the recordedCA1 cells are strongly skewed

(Mizuseki and Buzsáki, 2013); thus, the assumption of equal rep-

resentation of each position on the trackmay not hold. Such pre-

configured, skewed synaptic weight distributions may explain

why the dormancy of place cells predicted the expression of
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novel place fields. We submit, however, that if postsynaptic

perturbation is strong, even very weak, preexisting connections

can be strengthened sufficiently and give rise to a novel place

field. Thus, while the dormant-to-overt place field conversion

may be the physiological mechanism for novel place field induc-

tion, strong dendritic events may also trigger arbitrary position-

related place field expression. Importantly, this interpretation

does not negate the possibility that plateau potentials reflect a

physiological mechanism by which place fields are induced in

the intact brain (Bittner et al., 2015). However, our findings

demonstrate that this process in vivo may be more one of un-

masking preexisting connections and strengthened partnership

with assembly peers. This unmasking mechanism of place field

emergence may be analogous to the rate remapping observa-

tion, where ‘‘ghosts’’ of place fields in one apparatus can often

be recognized, which predict bona fide place fields in another

apparatus (Leutgeb et al., 2005).

Mechanisms of perturbation-induced remapping
Dormant activity in the induced place field recorded before opto-

genetic perturbation predicted the pattern of remapping, irre-

spective of whether the neuron was directly stimulated or not.

The immediate changes during stimulation were likely brought

about by the rapid redistribution of recurrent and lateral inhibition

(Trouche et al., 2016), and some of the immediate changes per-

sisted several hours post-stimulation. Alongside place field re-

mapping, optogenetic stimulation also recruited INTs into ripples

and affected the correlation structure among INTs and the pattern

of coupling between monosynaptically connected PYR/INT

pairs.Wehypothesize that theprimary componentof this local cir-

cuit reorganization is long-term plasticity in inhibitory signaling.

Although plastic changes may take place at multiple levels of

CA1 local connectivity, one potential locus of this plasticity is

the PYR to INT synapse, which is known to undergo activity-

dependent plasticity (Buzsáki and Eidelberg, 1982; Kullmann

and Lamsa, 2011; Lau et al., 2017; Le Roux et al., 2013; Lu

et al., 2007; Nissen et al., 2010). To study PYR-INT plasticity,

we quantified the change in spike transmission probability

(Csicsvari et al., 1998; English et al., 2017), a measure shown

to be highly correlated with single PYR neuron-induced excit-

atory postsynaptic potentials (EPSPs) in parvalbumin (PV)-ex-

pressing INTs in vivo (Galarreta and Hestrin, 2001; Jouhanneau

et al., 2018). A population measure of PYR-INT spike transmis-

sion (synapsembles) showed a significant rearrangement

following optogenetic stimulation, possibly driving the remap-

ping in the place fields of PYR cells. We also observed significant

synapsemble reorganization in a statistical model lacking slow

timescale fluctuations, where changes in spike transmission

only depended on the recent (seconds) history of presynaptic

spiking (Ghanbari et al., 2020). We acknowledge that these indi-

rect measures of synaptic plasticity need to be confirmed by

future intracellular experiments. However, the current data are

compatible with the hypothesis that INTs played an important

role (Dupret et al., 2013; Schoenenberger et al., 2016). As

further support for the involvement of inhibition, we also demon-

strated that INT firing rate ensembles, although not PYR ensem-

bles, were reorganized following optogenetic stimulation. In

addition, INTs on the stimulated shank showed a large gain in
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SPW-R-related firing, compared to INTs on non-stimulated

shanks or in control sessions. Finally, INTs that were highly

active during waking SPW-Rs on the track showed a larger

gain in SPW-Rs from pre-RUN sleep to post-RUN sleep in the

homecage compared to INTs with low waking SPW-R activity.

Overall, our analysis of ensemble activity points to the critical

role of inhibitory neurons in both short-term and long-term re-

mapping of place fields. The molecular identity of the INT type(s)

that played a critical role in our experiments need to be explored

in future experiments.

In addition, the relationship between induced and sponta-

neous reorganization of hippocampal circuits needs to also be

addressed in future studies. A growing body of literature has

shown that, even when task demands and sensory stimuli

remain fixed, the spatial code of the hippocampus ‘‘drifts’’ (Bla-

don et al., 2019; Cai et al., 2016; Mankin et al., 2012; Ziv et al.,

2013), as reflected by different neural firing patterns observed

in the same location at different times. It is possible that some

of this drift may be related to the reorganization of local feedback

circuits. However, othermechanisms have also been postulated,

such as fluctuations in intrinsic excitability (Cai et al., 2016) and

varying readout of decaying cortical activity signaling some

event that happened in the past (Bright et al., 2020). Rapid,

task-dependent changes in the place coding have also been

described (Jackson and Redish, 2007; Jezek et al., 2011; Kele-

men and Fenton, 2010), which likely require inhibitory neurons

to coordinate groups of PYR neurons and allow for rapid transi-

tions to other ensembles when task demands change or when

learning about a novel environment (Cohen et al., 2017; Frank

et al., 2004; Sheffield et al., 2017). We hypothesize that our arti-

ficial stimulation affected this inhibitory recurrent circuitry to pro-

duce place field reorganization.

Conclusions
In summary, we hypothesize that moderate perturbations can

unmask subthreshold, preexisting place fields. Overall, pertur-

bation studies are compatible with the general framework that

incorporation of novel information within brain circuits is con-

strained and guided by a backbone of a preexisting repertoire

of states (Battaglia et al., 2005; Dragoi and Tonegawa, 2011; Far-

ooq et al., 2019; Golub et al., 2018; Luczak et al., 2009; Mizuseki

and Buzsáki, 2013). Such preconfigured dynamics may reflect

regularities captured across prior learning experience—the neu-

ral schema (McKenzie et al., 2014; Sanders et al., 2020; Tse et

al., 2007)—in combination with the self-organized scaffold

assembled across development (Farooq and Dragoi, 2019; Li

et al., 2012; Xu et al., 2014).
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Recording and online analysis software Cambridge Electronic Design Spike2
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Other
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Power1401 Microprocessor Cambridge Electronic Design Power1401-A3
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to and will be fulfilled by the Lead Contact, György Buz-

sáki (Gyorgy.Buzsaki@nyumc.org)

Materials availability
No new materials were generated in these studies.

Data and code availability
The datasets generated during the current study are available in the Buzsaki lab repository, https://buzsakilab.nyumc.org/datasets/

McKenzieS/.

Custom lab software is available at https://github.com/buzsakilab/buzcode and MATLAB scripts for the current project will be

made available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Homozygous CaMKIIa-Cre line T29-1 transgenic mice (Jackson Laboratory #005359) were crossed with homozygous Ai32

mice (Jackson Laboratory #012569) to express channelrhodopsin2 (ChR2) in neurons expressing male and female CaMKIIa

in F1 hybrid mice (n = 5; 3 male; 25-40 g, 30-50 weeks of age). After implantation, animals were housed individually on a

reversed 12/12 h day/night schedule. Following one week of recovery, mice were recorded 5-7 days/week for two months

before being euthanized with pentobarbital cocktail (Euthasol�, intraperitoneal 300 mg/kg) and perfused with formalin

(10%). All experiments were conducted in accordance with the Institutional Animal Care and Use Committee of New York Uni-

versity Medical Center.
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METHOD DETAILS

Task
Mice were trained to run laps on a linear track (120 cm long, 4cm wide) to retrieve water reward (5-10mL) at each end. Before implan-

tation, water access was restricted and was only available as reward on a linear track and ad libitum for 30 minutes at the end of each

day. After mice reliably ran 50 trials in under an hour (�1week daily training), free water access was restored for at least two days, and

surgery was scheduled.

For a typical recording session, a one hour baseline recording was conducted in the mouse’s home cage (REST1), followed by a

calibration of light intensity for optogenetic stimulation. Thenmice ran 25-30 trials in amorning session (RUN1), followed by 1-4 hours

of homecage recording (REST2) and another 25 trials in an afternoon/evening session (RUN2), followed by redelivery of the calibrat-

ing light pulses in the homecage and ad libitumwater access. On Control sessions, the calibration pulses were given though no stim-

ulation was delivered on the track.

To deliver optogenetic stimulation at a fixed location and running direction, an infrared sensor was placed at a random location on

the track. Sensors were also placed at each end to control water delivery. An Arduino circuit detected beam breaks to activate so-

lenoids to deliver water and to send a TTL pulse to a DAQ (CED Power 1401 Cambridge, UK) which delivered voltage control signals

to the integrated mLEDs.

In every subject tested we noticed that there would be days in which mice would stop running past the unmarked stimulation site

after stimulation and defecate despite being very familiar with the recording protocol. This occurred in 10%–15% of recording ses-

sions and these sessions were excluded. In the remaining sessions, mouse behavior did not appear to be affected by the stimulation

(Figure 1).

Surgery
Mice were anesthetized with 1.5%–2% isoflurane (2 L/min) and provided with a local anesthetic to the incision site (bupivicaine at

0.05 mg/kg, 2.5 mg/ml, S.C.). The skull was cleaned with saline and hydrogen peroxide and ground wires (bare stainless steel)

were positioned intracranially over the cerebellum. The skull was then coated with Optibond (Kerr Dental, Brea, CA) and a craniotomy

(�1.5 3 0.5 mm) was performed at AP �2.2, ML �2.0 (left hemisphere), 45� angle from the midline. The dura was removed and the

probe was implanted �0.5mm into the cortex. The probe and custom driver were cemented to the skull with C & B Metabond Quick

Adhesive Cement (Parkell) and Unifast Trad acrylic (GC America). The craniotomy was capped with a mixture of mineral oil (one part)

and dental wax (three parts), and a Faraday cage was constructed using copper mesh and connected to the cerebellar ground wire.

Following surgery, an opioid analgesic was injected (Buprenex at 0.06 mg/kg, 0.015 mg/ml, IM) and given as needed for the next

1-3 days.

Recording and stimulation
Neural data was acquired using 32 site, 4-shank mLED probes (Wu et al., 2015); Neurolight, MI). Data were amplified and digitized at

30kHzwith Intan amplifier boards (RHD2132/RHD2000 Evaluation System, Intan). mLEDswere controlled with voltage (2-3.5 V gener-

ating 1-20 mW of total light power) provided by a CED Power 1401 programmed with Spike2 (CED) which delivered light pulses (pre

and post run) or 1 s long sinewaves (when the track IR beamwas crossed). The animal’s positionwasmonitoredwith a Basler camera

(acA1300-60 gmNIR, Graftek Imaging) sampling at 30Hz to detect head-mounted blue and red LEDs. Position was synchronized with

neural data with TTLs signaling shutter position as well as a blinking LED (0.5 Hz) mounted 1 m above the maze.

Blue light (centered emission at 460 nm) was delivered on one or two mLEDs (always 1 mLED/shank, emission surface area =

150 mm2). To minimize artifact, the control voltage was held just under the forward voltage (2V). For calibrating light intensity, pulses

(100ms, 1-1.5 s variable inter-stimulus intervals) were delivered at 5 amplitudes (20 pulses/amplitude). The total radiant flux of the

minimum pulse amplitude was typically around 1 - 5 mW, and the radiant flux of maximum amplitude, that was also used during track

stimulation, was around 15-20 mW. This maximum intensity in the homecage was calibrated to be just subthreshold of a population

oscillation, which was never observed on the track, likely since inhibitory tone is higher, as this highest stimulation level evoked a

weaker response during the theta state (Figure S1). On the track, 1 s half sine waves were delivered when mice crossed an IR

beam. Track stimulation only occurred in one running direction and, unless otherwise noted, was most frequently given for a block

of 5 trials (see Table S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unit isolation
Spikes were extracted and classified using Kilosort (Pachitariu et al., 2016). Global principal components were calculated (three per

channel,8 channels/shank) and spikes were extracted from the highpass filtered wideband signal (3rd order Butterworth filter, pass-

band: 0.5 – 15kHz). Manual unit curation was done using Klusters. Spike sorting quality was assessed with L-Ratio (Schmitzer-Tor-

bert et al., 2005), Isolation distance (Schmitzer-Torbert et al., 2005), inter-spike interval violation, and visual inspection of cross-cor-

relations suggestive of erroneous splitting of single units.
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Cell type classification
Spike waveform (width and asymmetry), autocorrelation properties, and mean firing rate (mean inter-spike interval) were used to

classify neurons into excitatory cells and interneurons. The autocorrelation was parameterized with a double exponential model (Plat-

kiewicz et al., 2021):

ACGBASE = ðb1 + b2Þ � e
�x2

b3 ; for x % 0 otherwise ACGBASE = 0 (Equation 1)
ACGBURST = b1 � e�xroundðb4Þ
b5 + b2; for x > 0 otherwise ACGBURST = 0; and 0:9 < b4 < 2:1 (Equation 2)
ACG = ACGBASE +ACGBURST (Equation 3)

Units were defined by: rate, autocorrelation peak above baseline b1, spike width, and spike asymmetry. Then k-means clustering

(k = 2) was performed on the z-score normalized featurematrix which separated excitatory cells from putative interneurons (including

fast spiking and regular spiking interneurons). The validity of the cluster labels was confirmed through the cross-correlation (CCG)

analysis, revealing increased synchrony at synaptic time-scales (see Synapsemble analysis).

Ripple detection
The local field potential (LFP) was extracted by low-pass filtering the 30 kHz raw data (sinc filter with a 450 Hz cut-off band) and then

downsampling to 1250 Hz. For ripple detection, the LFP was bandpass-filtered (3rd order Butterworth, passband: 130-200 Hz),

squared, and z-score normalized. Events with peak power > 5 standard deviation (SD), sustained power > 2 SD, and duration be-

tween 30-200 ms were detected. When available, such events were also detected on a non-hippocampal, ‘noise’ channels and

events common to both (e.g., EMG artifacts) were excluded. Stimulation periods were also excluded. Ripple onset was the first

moment when the bandpassed signal increased > 2 SD.

Ripple co-fluctuation analysis
Ripple start and stop times were taken as themoments when ripple-band power rose above and fell below 2 SD of baseline. Rate per

ripple was simply the number of spikes per neuron divided by the duration of the ripple event. Pairwise co-fluctuations were quan-

tified through analysis of the Spearman correlation of ripple rates pre- ðCorrPreRUNÞ and postRUN ðCorrPostRUNÞ. Multiple regression

analyses were used to predict:

Post-RUN ripple correlations

CorrPostRUN = b0 + b1 � CorrPreRUN + b2 � PlaceFieldSeparationPostSTIM (Equation 4)

while accounting for pre-stimulation place fields

CorrPostRUN = b0 + b1 � CorrPreRUN + b2 � PlaceFieldSeparationPostSTIM + b3 � PlaceFieldSeparationPreSTIM (Equation 5)

and preRUN ripple correlations,

CorrPreRUN = b0 + b1 � PlaceFieldSeparationPostSTIM (Equation 6)

while accounting for pre-stimulation place fields

CorrPreRUN = b0 + b1 � PlaceFieldSeparationPostSTIM + b2 � PlaceFieldSeparationPreSTIM (Equation 7)

Place field remapping analysis
The two-dimensional location of the mouse was linearized by projecting actual position onto the straight line of the track. A Kalman

filter (2nd order; locally quadratic) was used to derive a BayesianMAP estimate of instantaneous speed and only moments with speed

> 1.5 cm/sec were considered for place field analysis. Position was binned (100 bins, each 1.2 cm) and the spike count and occu-

pancy at each binned position was convolved with a Gaussian kernel (s = 5 spatial bins = 4.2 cm). Rate maps were calculated as the

smoothed spike counts divided by the smoothed occupancy. Rate maps were calculated separately for inbound and outbound jour-

neys and for each of four conditions: fpre stimðxÞ, fstim trialðxÞ, fpost stimðxÞ, fRUN2ðxÞ.
To calculate a trial-by-trial estimate of remapping, two methods were adopted. First, a statistical modeling approach was taken to

assess the likelihood of the observed spike train derived from a Poisson process with a conditional intensity function defined by place

field templates observed either before or after stimulation. The place maps were constructed from a training set of all trials except for

the one for which the log-likelihood of the spike train was evaluated. The position xðtÞat each moment during this test trial, and the

place fields fpre stimðxÞ, fpost stimðxÞ constructed from the training set were used to produce an estimated intensity at each time
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according to each place field template, fpre stimðtÞ= fpre stimðxðtÞÞ and fpost stimðtÞ = fpost stimðxðtÞÞ. The log-likelihood of the spike train

tswas calculated following Harris et al. (2003), under two place field models:

LLf prestim = �
Z

fprestimðtÞdt +
X
s

log
�
fprestimðtsÞ

�
; (Equation 8)
LLf poststim = �
Z

fpost stimðtÞdt +
X
s

log
�
fpoststimðtsÞ

�
(Equation 9)

where ts is the time of each spike and dt = 1
30 s.

The degree to which remapping occurred was quantified with the log-likelihood ratio normalized by the duration of the trial for the

evaluated spike train T,

LLratio =
LLfpoststim � LLfprestim

T
(Equation 10)

LLratio gives howmuch information is conveyed by the spike train about the post-stimulation rate map relative to the pre-stimulation

rate map in bits per second. The cumulative sum of the LLratio without the normalization provides a running estimate of the total

amount of information conveyed by the spike train with respect to one place field map or the other.

There were three classes of remapping neurons, those for which fields emerged, those for which fields disappeared, and those for

which fields shifted. In all cases remapping neurons must have had average post-stim LLratio > 0.75 bit/sec. Shifting neurons must

have had a spatial information score (Olypher et al., 2002) of more than 2 bits/spike for place fields before and after stimulation and

the peak firing must have been at least 10cm apart; there was no rate threshold. For disappearing fields, the peak rate before stim-

ulation must have been > 5 Hz and the peak rate after stimulation must have been < 5Hz with a pre-stim spatial information score > 2

bits/spike. Similarly, for appearing fields, the peak rate after stimulation must have been > 5 Hz and the peak rate before stimulation

must have been < 5Hz with a post-stim spatial information score > 2 bits/spike. Stable neurons were defined as those with an

LLratio < 0.75 bit/sec, place field peaks that stayed within 10cm, and fields either before or after stimulation with > 2bits/spike;

no peak rate criteria were adopted. The main findings were robust against selection of spatial information score and LLratio, as

well as for a correlation based remapping metric described below.

A second method to quantify remapping was also adopted that uses more standard correlation of place field templates. Here, two

templates were calculated, one for place field maps prior to stimulation (premap) and another for post-stimulation place field maps

(postmap). Both templates were correlated (Pearson’s correlation coefficient) with single trial rate maps (premap corr/postmap corr),

always excluding the correlated trial from the data from which the template was defined (i.e., the premap template is derived from

data from trials 2-10 when correlated with trial 1). The mean difference between the template matches prior to stimulation, Dcorr_

prestim gives a measure for predictiveness of poststimulation spatial tuning in generating the prestimulation rate maps. The mean

difference between the template matches post stimulation, Dcorr_poststim provides the converse measure, the predictability of

prestimulation place field tuning for post stimulation activity. To avoid firing rate thresholds, we opted to include any place field

map that showed trial-to-trial spatial reliability (mean premap corr. > 0.25 for trials before stimulation and mean postmap corr. >

0.25 for trials after stimulation). Trial-by-trial correlations were done in a similar manner where each trial’s firing rate map was corre-

lated with each other and the rate of decorrelation (drift) wasmeasuredwith or without intervening optogenetic simulation (Figure S4).

Inhibitory cells were excluded from place field analyses.

Bayesian decoding
Bayesian decoding was conducted following Zhang et al. (1998). The decoding time bin was 100 ms. Cross validation was accom-

plished by constructing place fields that excluded activity recorded on the trial for which position was estimated. Only sessions in

which more than 20 pyramidal cells were simultaneously recorded were considered.

Predicting new field locations with RUSBoost
We adopted the RUSBoost binary classification algorithm (Seiffert et al., 2008) to predict whether neural activity observed at each

location on the track was recorded in the future place location. RUSBoost is designed to handle the class imbalance problem in

data with discrete class labels, which we faced, as we defined latent place field locations as 10 cm segments of the track centered

on the post-stim place field peak. The RUSBoost algorithm uses a combination of RUS (random under-sampling) and the standard

boosting procedure AdaBoost, to better model the minority class by removing majority class samples. RUSBoost was implemented

with MATLAB 2020a’s fitcensemble algorithm to create 100 classification trees (without shrinkage) from the training set. The learned

mapping was then used to predict whether withheld data was recorded in a future place field or not. The features that defined a loca-

tion were the cell’s single-pass firing rate as observed for each 10 cm segment of the track, and the proportion of spikes observed in a

burst. Ten random 50/50 splits of the pre-stimulation data were performed for the cross validation and the reported hit and false

positive rates reflect the mean across independent cross-validations. A control bootstrap distribution was generated by shuffling
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the position labels for the held-out data (100 shuffles). The positive likelihood ratio (hits divided by false alarms) was used to compare

whether neurons did better than the bootstrap distribution (> 95%bootstrap) and whether bursts or firing rates were more predictive.

Peer prediction analysis
To predict the activity of one target cell from the population of peer cells, we used the generalized linear model approach of Harris

et al. (2003). Spike trains of the target and peers were binned with different resolutions (20 bin widths, logarithmically spaced from

5-5000ms). Ten-fold cross validation was used to build a training set with 90%of the data and a test set with the remaining 10%. The

predicted intensity at a time t was given by

ft = g

 X
a

stawa

!
(Equation 11)

The link function gðhÞ was defined as

gðhÞ =
�
eh; h< 0
h+ 1; hR0

(Equation 12)

The prediction weights wa were chosen to maximize the regularized log-likelihood on the training set:

LLpeer =
X
t

� ftdt + nt log ftð Þ � 1

4

X
a

w2
a (Equation 13)

where nt is the number of spikes observed in that time bin.

The minimization of LLpeer was carried out using MATLAB 2018b’s fmincon function using the default Interior Point Algorithm and

upper and lower weight bound of ± 100.

Synapsemble analysis
A wealth of in-vitro data suggests that the strength of synaptic coupling (e.g., magnitude of the evoked PSP) changes following

different pairing protocols. Our goal was to capture related changes in our dataset by estimating long-term changes in spike trans-

mission between monosynaptically connected pyramidal cells and interneurons (as defined by English et al., 2017; Figure S4). In or-

der to do this, we model the postsynaptic spike train using a generalized linear model (GLM) with the following two features: (1) a

coarsened, slowly-evolving version of the postsynaptic rate (baseline term) and (2) a transient boost following the presynaptic spike

whose magnitude varies with time on a long timescale (coupling term). The features are summed and passed through an exponential

nonlinearity to yield the instantaneous postsynaptic rate lpostðtÞ. The exponentiated coupling term can therefore be interpreted as a

multiplicative, presynaptically-induced gain acting on an otherwise slowly evolving postsynaptic rate (the exponentiated baseline

term). This separation of timescales assumption conveniently dodges the issue of capturing all parameters modulating the postsyn-

aptic rate (e.g., theta, behavioral state). The conditional intensity function takes the following form:

lpostðtÞ = CðPostðtÞÞ ePreðt�DÞ XCðtÞ $ k (Equation 14)

where Pre and Post are the pre- and postsynaptic spike trains binned at dt = 0.8ms, ensuring that each bin has atmost one spike.D is

the mode time lag between the pre- and postsynaptic spikes estimated from the raw CCG. CðPostÞ is the coarsened baseline rate

obtained by counting postsynaptic spikes in 15 ms wide bins, expressing these as rates, and linearly interpolating at times corre-

sponding to the centers of the dt-sized bins that were used to bin spikes. Note that in the absence of a presynaptic spike immediately

preceding t (i.e.,Preðt �DÞ= 0), the predicted rate is equal toCðPostðtÞÞ.Wemodel the slow changes in synaptic coupling XC $ kwith

a linear combination of cubic B-splineswith equally spaced knots. For each pair of neurons, the spacing of the knots (every 400 - 1000

s, in increments of 100) is selected by cross-validation using 100 s even/odd data splits. More specifically, the data are divided into

100 s data segments, such that odd segments are used for training, and even segments for testing. Because the parameters k are

only constrained when Preðt � DÞ= 1, we fit the model in these bins exclusively. We use an LBFGS algorithm to minimize the convex

negative log-likelihood with analytically computed gradients.

In order to explore the specific dynamics that govern changes in spike transmission, we made use of an extended GLM in which

the coupling term takes the form of a dynamical model for short-term plasticity (Ghanbari et al., 2020; Tsodyks and Mark-

ram, 1997):

lpostðti + DÞ = CðPostðti + DÞÞ e A wi (Equation 15)

where lpostðti +DÞ is the postsynaptic rate at monosynaptic lag D following the i-th presynaptic spike. At all other times, lpost =

CðPostÞ. A is the constant coupling strength, and wi is a scale factor that depends on the history of presynaptic spiking through

the Tsodyks-Markram (TM) model (Tsodyks and Markram, 1997), a nonlinear dynamical system to capture short term plasticity:

wi = Riui (Equation 16)
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Ri = 1 � ð1 � Ri�1ð1 � ui�1ÞÞ e�ti�ti�1

td (Equation 17)
ui = U + ðui�1 + fð1� ui�1Þ � UÞe�ti�ti�1

tf (Equation 18)

R captures the dynamics of presynaptic resources whose recovery time course, set by timescale td, determines the degree of short-

term depression. u describes the utilization of resources that describe short-term facilitation through its timescale of decay tf , magni-

tude of facilitation f, and presynaptic release probabilityU. For each PYR-INT pair, we fit themost parsimonious model by comparing

the Akaike information criterion of the following candidatemodels: no plasticity ðw = 1Þ, depression only (tf = 0, f = U), facilitation (td =

0, f = U), 3-parameter TM (f = U), and the full model. For details of the optimization procedure, see Ghanbari et al. (2020).

For each model (long- and short-term coupling), the instantaneous spike transmission – i.e., postsynaptic rate injected by a pre-

synaptic spike – was estimated by taking the difference between the coarsened postsynaptic rate and that predicted by the

full model:

ldiff = lpost � CðPostÞ (Equation 19)

In order to obtain a smoothly varying estimate of spike transmission (i.e., even at times when the presynaptic neuron is not spiking),

ldiff was convolved using a Gaussian kernel with a standard deviation of 120 s. In order to get a bin-by-bin estimate of spike trans-

mission (in Hz) per presynaptic spike, we normalized the resulting time series by the presynaptic spike train convolved in the same

manner.

In order to find ensembles reflecting higher order coactivations among the spike transmission time series (i.e., synapsembles), we

performed an unsupervised statistical analysis based on ICA (Lopes-dos-Santos et al., 2013; Peyrache et al., 2009; van de Ven et al.,

2016). Briefly, spike transmission time series were represented as a matrix z, which was z-scored and downsampled to 10 Hz. The

number of synapsembles in each session was based on the N principal components of the correlation matrix whose variances ex-

ceeded an analytical threshold based on theMarcenko-Pastur distribution describing variances expected for uncorrelated data. The

high-dimensional activity matrix was projected onto the subspace spanned by these N principal components, and ICA was per-

formed to extract synapsembles (each corresponds to an independent component). The expression strength of each synapsemble

was computed as,

AðtÞ = zðtÞTPi zðtÞ (Equation 20)

where Pi is the projection matrix (outer product, diagonal set to zero) of the i-th independent component. As such, A(t) quantifies the

moment-to-moment similarity between an independent component (synapsemble template) and the instantaneous spike transmis-

sion pattern across all PYR-INT pairs.

In order to quantify synapsemble rearrangements across a relevant time point T, we defined the change in synapsemble expres-

sion as the difference between mean expression strength around T. For stimulation sessions, T was the first stimulation event on the

track, while for controls, we selected the halfway point of the track running session. In each case, differences in mean expression

strengths were based on time intervals that included entire homecage periods flanking the track period. Synapsembles were de-

tected either in the period before or following T. A negative value for the change in expression strength reflects that the synapsemble

is re-expressed less prominently following T (if it was detected prior) or before T (if it was detected after).

This analysis pipeline was also conducted for ensembles of presynaptic pyramidal neurons (PYR ensembles) or postsynaptic in-

terneurons (INT ensembles). For each session, spike trains of neurons that figured in PYR-INT connections were binned at

dt = 0.8 ms, and convolved with a Gaussian whose full-width at half maximum matched the timescale of the corresponding spike

transmission time series as estimated from cross-validation in the long-term model. The resulting firing rate time series were z-

scored, and the above described ensemble analysis was performed to estimate changes in rate ensembles around T.

GFP control
Two adult male Tg(Camk2a-cre)T29-1Stl mice (The Jackson Laboratory; #005359; Tsien et al., 1996) were anesthetized and injected

with a Cre-dependent adeno-associated virus (AAV) expressing EYFP (Addgene viral prep # 27056-AAV5 ; http://addgene.org/27056

; RRID:Addgene_27056) delivered through a glass pipette (Sutter Instruments). Injections targeted right dorsal CA1 (�2 mm AP,

1.7 mm ML w.r.t bregma ; 1.2 mm depth), and 300 nL of AAV-Ef1a-DIO EYFP (titer R 1 3 1013 vg/mL) was injected at a flow rate

of 50 nl/min (World Precision Instruments, UMP3 UltraMicroPump). Three weeks following virus injection, animals were re-anesthe-

tized for head plate implantation. The skull was exposed, and a custom designed 3D printed head plate was attached with C & B

MetabondQuick Adhesive Cement (Parkell). A single steel screwwas implanted over the cerebellum as ground and reference. Lastly,

a craniotomy was drilled over the site of the virus injection, and sealed with silicone adhesive (World Precision Instruments, Kwik-Sil)

until the day of recording.

Over the course of one week, mice were habituated to head fixation while running on a custom designed running wheel. On the day

of recording, Kwik-Sil was removed to expose the craniotomy, and a mLED-equipped silicon probe was slowly lowered into the brain

until sharp-wave ripples were detectable on all four shanks. Following 10-20 minutes, a 1h recording session was performed, during
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which light was delivered, one mLED at a time, to shanks with high single unit activity. 100ms square pulses with 1 s inter-pulse in-

tervals with 5 driving currents chosen to span the full range of light intensities used inmice expressing ChR2. mLEDswere driven using

an open-source mLED current controller (https://github.com/YoonGroupUmich/osc1lite). Following the acute experiment, mice were

perfused as described, and EYFP expression was verified using light microscopy (Olympus).

Effect size estimates
We follow the recommendation of Calin-Jageman and Cumming (2019) and the methods developed by Kruschke (2013) to report

effect sizes. We include an additional Bayesian statistical test for each comparison and report the highest density interval (HDI) of

the effect size that lies outside of zero. For comparisonswith underlying skewed distributions, wemodel the data, y, as having derived

from a skewed, non-centered Student’s t-distribution.

In JAGS notation

Y � dntðmuCOND + muMOUSE; tauCOND;dfCONDÞ for t > 0 and df > 0 (Equation 21)

where,

Y < � U=sqrtðVÞ (Equation 22)
U � dnormðmuCOND + muMOUSE; tauCONDÞ (Equation 23)
V � dgammaðdfCOND = 2; dfCOND =2Þ (Equation 24)

The choice of tau, mu, and df that best fits the data is found through Markov Chain Monte Carlo (MCMC) with weakly informed priors

as in (Kruschke, 2013). Inter-subject differences were modeled by fitting means that were a linear combination of effects driven by

random-effects for individual mice, muMOUSE, and the condition-specific effect of interest muCOND (e.g., COND = stim versus Control).

For normal data, a similar approach was taken, though assuming

y � dnormðmuCOND + muMOUSE; tauCONDÞ (Equation 25)

The distribution of credible parameters was identified for each group under comparison and the effect size calculated with three

MCMC chains, 1000 burn-in steps and five thinning steps (to avoid auto-correlations in the Markov process).
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