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SUMMARY
The large diversity of neuron types provides the means by which cortical circuits perform complex opera-
tions. Neuron can be described by biophysical andmolecular characteristics, afferent inputs, and neuron tar-
gets. To quantify, visualize, and standardize those features, we developed the open-source, MATLAB-based
framework CellExplorer. It consists of three components: a processing module, a flexible data structure, and
a powerful graphical interface. The processing module calculates standardized physiological metrics, per-
forms neuron-type classification, finds putative monosynaptic connections, and saves them to a standard-
ized, yet flexible, machine-readable format. The graphical interface makes it possible to explore the
computed features at the speed of a mouse click. The framework allows users to process, curate, and relate
their data to a growing public collection of neurons. CellExplorer can link genetically identified cell types to
physiological properties of neurons collected across laboratories and potentially lead to interlaboratory stan-
dards of single-cell metrics.
INTRODUCTION

Discovering novel mechanisms in brain circuits requires high-

resolution monitoring of the constituent neurons and an

understanding of the nature of their interactions. Large-scale,

extracellular electrophysiology aims to establish the relationship

between neuronal firing and behavioral or cognitive variables to

provide insights about the computational role of neurons and

neuronal assemblies (Barlow, 1972; Buzsáki, 2004; Steinmetz

et al., 2019). Exploiting the power of correlations between

neuronal firing and behavioral variables requiresmulti-level char-

acterization of single neurons and their interactions. Simulta-

neous recordings from many neurons, preferably identified by

optogenetic and other methods, make it possible to build an

extensive list of neuron features and their assigned ‘‘cell type’’

properties (Figure 1). Identification and manipulation of different

neuron types in the behaving animal is a prerequisite for deci-

phering the neuron role in circuit dynamics and behavior. How-

ever, currently, a gap exists between neuron classification

schemes based on molecular and physiological methods (Gou-

wens et al., 2019; Jia et al., 2019; Kepecs and Fishell, 2014;

Klausberger and Somogyi, 2008; McBain and Fisahn, 2001;

Roux and Buzsáki, 2015; Rudy et al., 2011), largely because of

vast differences in processing data across laboratories and
even within the same laboratory. Ideally, acquired data must

be findable, accessible, interoperable, and reusable (FAIR; Wil-

kinson et al., 2016). That requires an agreed-upon platform for

data and metadata curation that allows the sharing of datasets

across laboratories for cross-examination and the building of

‘‘big data’’ from experiments collected in multiple laboratories.

Using an easily interpretable and standardized data format will

facilitate neuroscientists in effectively and transparently commu-

nicating their experiments (Sejnowski et al., 2014; Teeters et al.,

2015; Bouchard et al., 2016; Martone et al., 2020).

Properties of neurons can be described at multiple levels of

complexity. The first level is a description of their biophysical

characteristics. This level includes waveform features (Fig-

ure 1B), their position relative to the recording sites, and other

units andmetrics related to firing patterns: interspike interval sta-

tistics, ACGs, and derived metrics (Figure 1C). These first-level

features can be used for a first-order separation of single neu-

rons into putative major classes, typically excitatory and inhibi-

tory cells (Figure 1D). Single-neuron properties can be related

to genetically identified neuron classes with optogenetics and

other more-direct methods, such as juxtacellular and intracel-

lular recordings (Boyden et al., 2005; Klausberger and Somogyi,

2008; Rudy et al., 2011; Buzsáki et al., 2015; Roux and Buzsáki,

2015; Lima et al., 2009). Antidromic and unit local field potential
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Figure 1. Experimental, paradigm-indepen-

dent characterization of single neurons

(A) Using high-density silicon probes or multiple

tetrodes (shown is a single shank with eight

recording sites), dozens to hundreds of neurons

can be recorded simultaneously.

(B) Spikes are extracted from the recorded traces

and assigned to individual neurons through spike-

sorting algorithms (the average waveforms across

multiple channels from two putative cells).

(C) The relative positions of each neuron are

determined through trilateration. Top: neurons

projected on a silicon probe with six shanks and a

staggered poly-2 electrode layout). Bottom

panels: autocorrelograms (ACGs) are used to

characterize the neurons (a bursting pyramidal

cell with a wide waveform in red; a fast-spiking

interneuron with a narrow waveform in blue).

(D) Neuron-type classification based on first-order

biophysical parameters, such as spike-waveform

width (trough-to-peak) and the temporal scale of

the rising phase of the ACGs (trise). Optogenetics

and other direct identificationmethods can further

ground units to neuron types.

(E) Interactions between neurons are character-

ized by their cross-correlograms and mono-

synaptic connections (determined via spike

transmission probabilities).

(F) Event-related histogram.

(G) Relating spikes to LFP patterns.

(H) Relating spikes to brain-state changes.

(I and J) Spike pattern correlations with brain states and overt behaviors. Only a few possible examples are shown.

See also Table S1.
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(LFP)-coupling techniques provide further assignment of single

neurons to cortical regions, layers, and target projections

(Bishop et al., 1962; Zhang et al., 2013; Ciocchi et al., 2015; Sen-

zai et al., 2019; Shamash et al., 2018). The second level relates

properties of single neurons to other neurons. Examples include

cross-correlations and putative monosynaptic connections be-

tween excitatory and inhibitory neurons derived from spike

transmission probabilities (Figure 1E), pairwise and population

synchrony, and relationship to multiple oscillatory and irregular

LFPs (e.g., rhythmic patterns and up-down transitions in the cor-

tex). These metrics can be expanded for specific brain regions

and questions. The third-level metrics of single-unit activity

include the relationship between neuronal firing patterns and

brain states (e.g., non-rapid-eye-movement [non-REM], REM,

and awake states; Figure 1H) and overt behavioral correlates

(Figure 1I). These include, but are not restricted to, arousal states

(sleep states and waking), spontaneous motor patterns, move-

ment pattern changes, locomotion speed, head turns, whisker

movements, respiration, heart rate, body temperature, pupil

diameter, and other autonomic parameters (McGinley et al.,

2015; Stringer et al., 2019).

These three levels provide generic features of neuronal activity

common to all experimental paradigms in the same species and,

therefore, are communicable across different experiments and

laboratories, leading to joint databases and standardized met-

rics across different laboratories. Next, these three-level, para-

digm-independent features can be contrasted and compared

with experiment-unique manipulations and higher-level corre-
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lates of spiking activity. Because these latter correlations are

often paradigm specific and differ across laboratories, the

three-level analysis can safeguard against mistakenly assigning

cognitive and other roles of neuronal spiking when spike pattern

changes can be explained by measurable, overt behavioral cor-

relates. However, even if all of the above information is available

separately, factoring out critical variables and their combinations

is possible only when the multitudes of single-neuron character-

istics can be compared flexibly.

The above workflow is similar across many physiological ex-

periments. In the analysis of various features, an often-asked

question is how one particular feature of unit firing relates to

the many other metrics calculated by the experimenter. This is

typically done by identifying some unexpected firing patterns in

a set of neurons and independently analyzing features one by

one to find common features or to exclude potential artifactual

explanations. Whether testing a specific hypothesis or mining

the ever-growing number of publicly available datasets, this pro-

cess can be advanced by user-friendly processing pipelines,

standardization of data formats, and highly flexible visualization

methods. To provide the needed flexibility and to facilitate new

ways of data mining neurophysiological data, we developed

the open-source framework CellExplorer to characterize and

classify single-neuron features from multi-site extracellular re-

cordings. CellExplorer consists of a pipeline for extracting and

calculating physiological features, a flexible data format, and a

powerful graphical interface that allows for fast, manual curation

and feature exploration. We demonstrate its utility through



Figure 2. Three-component framework

A single, extensive processing module (green); standardized, yet flexible, data structure (yellow); and a graphical interface (purple). Data inputs are compatible

with most existing spike-sorting algorithms (gray). The data structure joins the processing module with the graphical interface (* signifies data containers).

CellExplorer is open source, built in MATLAB, and available on GitHub.

See also Figures S1, S2, and S3 and Table S2.
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multiple examples and explain its user-friendly operation though

detailed tutorials and video illustrations.

RESULTS

The CellExplorer architecture and operation consist of three main

parts: aprocessingmodule for featureextraction, agraphical inter-

face for manual curation and exploration, and a standardized, yet

flexible, data structure (Figure 2). A step-by-step tutorial is avail-

able in the Supplemental information, andmore tutorials are avail-

able online (Video S1). Flow charts are available in Figure S1. The

first step in running the pipeline is defining the data input.

Data input
When running the pipeline, relevant metadata describing the

spike format, raw data, and experimental metadata must be

defined (Figure 2). All experimental metadata (session-level)

are handled in a single MATLAB structure, with an optional

graphical interface for inspection and manual entry (Figure S2).

The platform supports several spike-sorting data formats,

including Neurosuite, Phy, KiloSort, SpyKING Circus, Wave_

Clus, MClust, AllenSDK, Neurodata Without Borders (NWB),

Alyx Files (ALF), MountainSort, and IronClust (Chung et al.,

2017; Hazan et al., 2006; Pachitariu et al., 2016; Quiroga et al.,

2004; Schmitzer-Torbert et al., 2005; Yger et al., 2018). The

wide-band, recorded, ‘‘raw’’ data are critical for comparing

derived metrics across laboratories because preprocessing

pipelines vary widely and depend on equipment type and filter

settings (described here: https://cellexplorer.org/datastructure/

standard-cell-metrics/#waveform-based-metrics). The hard-

ware used should always be specified because it can affect

the waveforms of the processed units (e.g., filter characteristics

and bandwidth) and compromise the separability of units on

waveform characteristics.

Processing module
From the input data, the processing module will generate cell

metrics corresponding to the three-level description of neuronal
firing (Figure 1) and their relationship to experiment-specific be-

haviors (Table S1 contains a representative list of metrics for

illustration; the full list is available at https://cellexplorer.org).

The processing module comprises a single MATLAB script,

ProcessCellMetrics.m, which computesmetrics using amodular

structure. The first-level description provides waveform features

(filtered and wideband) and temporal features: interspike interval

statistics (ISIs) and autocorrelograms (ACGs). Next, the unit pa-

rameters are used for the initial classification of single neurons

into broad default classes: putative pyramidal cells, narrow

waveform interneurons, and wide waveform interneurons. In

experiments with silicon probes, the physical position, relative

to recording sites, is also determined using spike-amplitude

trilateration (Petersen and Berg, 2016; Csicsvari et al., 2003).

The user can generate a probe layout and save that to the

data path. The processing module (ProcessCellMetrics) will

then detect and import the layout (see the channel map

tutorial: https://cellexplorer.org/tutorials/channel-maps-tutorial/

#channel-maps-tutorial). The main MATLAB functions are

described in Table S2.

The second level relates single-neuron spikes to the activity of

other neurons and population patterns. These metrics include

spike cross-correlograms (CCGs), quantitative identification of

putative monosynaptic connections, and phase relationships

to various LFP patterns and to unit-population patterns. Mono-

synaptic connections, in turn, can be used to identify putative

excitatory and inhibitory neurons, and that information can be

used to refine the primary unit classification (Figure 1E; Barthó

et al., 2004; English et al., 2017). All parameters can be custom-

ized according to the needs of each experimental paradigm

(Table S1; https://cellexplorer.org/datastructure/standard-cell-

metrics).

The third-level metrics are used to assess the relationship be-

tween firing patterns of neurons and overt behaviors, including

immobility, locomotion, and running speed. First- to third-level

metrics can further be supported by other more-direct methods,

which can bind physiological parameters to genetically identified

neuron groups (Boyden et al., 2005; Buzsáki et al., 2015; Roux
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and Buzsáki, 2015). Because these three-level metrics of single-

unit features are generalizable, they can be readily compared

with similar analyses across laboratories, independent of para-

digm-specific features. Toward these goals, the processing

module automatically generates all cell metrics in a standardized

fashion.

Features related to any behavioral paradigms can also be

computed, including manipulations (e.g., post-stimulus time his-

tograms [PSTHs]), behavioral tracking (spatial firing rate maps),

and task-related trial-wise response curves (e.g., response to a

sensory cue).

Data structure
The data structure of CellExplorer (the format is documented on-

line and summarized in Figures 2 and S3) is organized in data

containers and MATLAB structured arrays (structs), which func-

tionally separate different data content, making them both easily

interpretable (human readable), machine-readable, expandable,

and flexible. That structure is derived from Buzcode (a MATLAB-

based data format for electrophysiological recordings and

toolsets developed communally in the Buzsáki laboratory;

https://github.com/buzsakilab/buzcode), Neurosuite (neurosuite.

sourceforge.net), and the Freely Moving Animal (FMA) Toolbox

(fmatoolbox.sourceforge.net). Using a data format in MATLAB’s

native mat files (binary MATLAB files storing workspace vari-

ables) provides greater flexibility for day-to-day analysis—where

the codebase can change rapidly with user-dependent require-

ments for saving derived data—than some of the recently devel-

oped data standards, such as NWB (Teeters et al., 2015), which

uses a single HDF5 container per session. Instead, scripts are

available for translating standard fields of the data containers

into NWB, including spikes, behaviors, and events. The process-

ing module also supports NWB as an input format.

The three most-relevant structures are the session metadata

struct, the spikes struct, and the cell_metrics struct.

Session struct

The session metadata struct contains all session-level experi-

mental metadata (Figure S1). A session is defined as a set of

data typically recorded within the same day, in the same subject

(also commonly referred to as a single dataset). The session

struct has a modular structure (example modules: general, ani-

mal subject, extracellular, and brain regions), which makes it

flexible, expandable, and interpretable, and it offers a single

structure, capable of handling a wide range of types of metadata

related to extracellular data collection and processing. A meta-

data graphical user interface (GUI; gui_session.m; Figure S2) al-

lows for intuitive metadata entry and inspection, and a template

script (sessionTemplate.m) can assist in both importing existing

experimental metadata and generating relevant fields. Well-

curated and documentedmetadata are crucial for reproducibility

and are always need to be linked to the electrophysiological

data. See https://cellexplorer.org/datastructure/data-structure-

and-format/ for more information.

Spikes struct

The spike struct contains spike times and cluster IDs of all

spikes. It also contains all basic spike-derived fields, such as

the average spike waveform of each cell and the peak voltages.

These fields are expandable.
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Cell_metrics struct

The cell_metrics struct is a modular structure containing all cell

metrics calculated in the processing module. It consists of three

types of data fields for handling the diverse types of data:

numeric-double, character-cells, and structs. Single-value met-

rics (e.g., peak voltage, firing rate, and putative cell type) are

stored in numeric double or character cells. Time series (e.g.,

waveforms), group data (e.g., synaptic connections and user-

defined tags), and session parameters are stored in predefined

struct modules. This structure makes the content machine read-

able, including user-defined metrics, and provides expandability

and flexibility (users can add their own metrics) and maintains

compatibility with the graphical interface. The single struct

allows for processing multiple sessions together in the graphical

interface (batch processing) and is convenient for sharing

with collaborators and the broader scientific community in pub-

lications (see supplemental information and Table S1 for a

detailed description and https://cellexplorer.org/datastructure/

standard-cell-metrics/). To address cross-platform compati-

bility, we have also provided two other cell-metrics formats:

NWB and JavaScript Object Notation (JSON) files. CellExplorer

can save the cell metrics to these formats and load them back

into the default MATLAB struct format (please see the NWB

tutorial for further info: https://cellexplorer.org/tutorials/nwb-

tutorial/).

The CellExplorer graphical interface
The most important component of the framework is the user-

friendly graphical interface for single cells, called CellExplorer

(Figure 3; Video S1), which allows for characterization and explo-

ration of all single-unit metrics through a rich set of high-quality,

built-in, interactive plots; neuron grouping; cross-level pointers;

and filters. The user can interactively select plots and metrics

to show in a highly dynamic manor. In the typical layout of

CellExplorer with two rows of plots (Figures 3A and 3B, top

panel), the top row consists of population-level representations,

and the bottom row consists of single-cell features. Individual

neurons can be selected from any plot, and the other features

of the selected neurons will be automatically updated. The

user can zoom and pan by scrolling and dragging any plot (Fig-

ure 3C). A middle mouse click links to the selected neuron and a

right mouse click selects the neuron(s) from any of the plots for

further actions. These selected groups can be displayed alone

or highlighted and superimposed against data in the same ses-

sion, multiple sessions, or the entire database. Clusters of neu-

rons of interest can be selected by drawing polygons with the

mouse cursor, and the other features of the selected groups

are shown separately through group actions. Multiple group se-

lections are also possible for both visualization and statistical

comparison. Flexibility is assisted by side panels on both sides

of the graphs. The left side panel contains options for the custom

group plots, color groups, display settings, selection of single-

cell plots, and legends. The right panel contains single-cell ac-

tions, including navigation elements, cell-assignment actions,

tags, and a table with the metrics. The left side panel also

includes a text field for custom filters (e.g., numeric and string

filters). Below the graphs is a message log, keeping track of

user actions. CellExplorer also has a built-in track record of all
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Figure 3. Graphical interface

(A) The interface consists of four to nine main plots; in which, the top row is dedicated to population-level representations of the neurons. Other plots are

selectable and customizable for individual neuron (e.g., single waveforms, ACGs, ISIs, CCGs, PSTHs, response curves, and firing-rate maps). The surrounding

interface consists of panels placed on either side of the graphs. The left side displays settings and population settings, including a custom-plot panel, color-group

panel, display-settings panel, and legends. The right side displays single-cell dimensions, including a navigation panel, neuron-assignment panel, tags, and a

table with metrics. In addition, there is a text filter and a message log.

(B) Layout examples highlighting three configurations with one to three group plots and three to six single-neuron plots.

(C) The interface hasmany interactive elements, including navigation and selection from plots (left mouse click links to selected cell, and right mouse click selects

the neuron from all the plots), visualization of monosynaptic connections, various data-plotting styles (more than 30+ unique plots are built in), supports custom

plots; plotting filters can be applied by text or selection, keyboard shortcuts, zooming any plot by mouse-scrolling and polygon selection of neurons.

(D) Single-cell plot options: waveform, ACG, inter-spike interval (ISI), firing rate across time, post-stimulus time histogram (PSTH), response curve, spatial firing

rate maps, trilaterated neuronal position relative to recording sites, and monosynaptic connectivity graph.

(E) Most single-cell plots have three representations: individual single-cell representation, single cell together with the entire population with absolute amplitude,

and a normalized image representation (color map).

(F) Group plotting options: 2D, 3D, raincloud plot, t-SNE, and double histogram. Each dimension can be plotted on linear or logarithmic axes.

See also Figures S4, S5, and S6 and Video S1.
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user actions, which can be undone in a stepwise manner. The

group plotting options include a two-dimensional (2D)-represen-

tation, a 3D-representation, a double histogram, a raincloud plot

(Allen et al., 2019), and a customizable dimensionality-reduction
plot (T-distributed stochastic neighbor embedding [t-SNE], prin-

cipal component analysis [PCA], and uniform manifold approxi-

mation and projection [UMAP]; van der Maaten and Hinton,

2008; see group plot options in Figure S4). Axis scaling can be
Neuron 109, 1–15, November 17, 2021 5
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Figure 4. Data exploration example

(A) Connectivity graph with monosynaptic modules found across multiple datasets. Neurons are color coded by their putative cell types (pyramidal cells in red,

narrow interneurons in blue, and wide interneurons in cyan).

(B) Highlighted monosynaptic module with single pyramidal cell highlighted (arrow).

(C) First-level metrics: auto-correlogram, average waveform (top row; gray area signifies the noise level of the waveforms), ISI distributions, with the selected

neuron in black, and the physical location of the neurons relative to the multi-shank silicon probe.

(D) Firing rate across time for the population; each neuron is normalized to its peak rate. The session consists of three behavioral epochs: pre-behavior sleep,

behavior (track running), and post-behavior sleep (boundaries shown with dashed lines).

(E) Theta phase distribution for all neurons recorded in the same session (red, pyramidal cells; blue, interneurons) during locomotion with the selected neuron

highlighted (black line).

(F) Average ripple waveform for the electrode sites on a single shank. The site of the selected neuron is highlighted (dashed black line). The polarity of the average

sharp wave is used to determine the position of the neuron relative to the pyramidal layer in CA1.

(G) Ripple wave-triggered PSTH for the selected neuron aligned to the ripple peak.

(H) Trial-wise raster for the selected neuron in a maze.

(I) The average firing rate of the neuron across trials.

(J) Spike raster showing the theta-phase relationship to the spatial location of the animal.
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either linear or logarithmic (Figure 3F). Many of the cell features

have multiple visualizations and metrics. Let’s take the spike

waveform, as an example. It can be represented by (1) a single,

average, filtered/raw waveform from the channel with the largest

amplitude; (2) in comparison to the Z scored/absolute wave-

forms of the population; (3) in comparison to group averages

(e.g., cell types); (4) waveforms across the probe: as a probe-

layout-projected representation, as an image representation,

and as a spike-amplitude distribution; (5) single-cell metrics:

trough-to-peak (a measure of the waveform width), an AB ratio

(a measure of the asymmetry of the waveform), peak voltage

(the amplitude of the waveform), and peak channel; and (6) the

temporal aspects of the spike amplitude across the entire

recording, as a stability measure, which can be visualized

through spike rasters (see a subset of the plotting options in

Figure S5).

Examples of the flexible operation of the graphical interface

module are illustrated in Figure 4 and are described inmore detail

in Video S1. Here, we begin withmotifs of monosynaptically con-

nected clusters of neurons from the hippocampal CA1 area, as

determined by the processing module (Figure 4A). An example

sub-network of connected neurons is highlighted in Figure 4B,

with a selected single neuron to be characterized (arrow).

Selected first- to third-level metrics of the neuron are displayed

in Figures 4C–4G. In several panels, the metrics of the selected

neuron are shown against other neurons from the same dataset.
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Amiddle mouse click on any neuron will update all the panels for

that particular cell, allowing quick screening and qualitative eval-

uation of multiple features. Neurons of interest can bemarked for

further quantitative comparisons. Next, first- to third-level met-

rics can be compared with paradigm-specific features of the

selected neuron(s). For example, in the case of the hippocampal

neurons, place field, trial-by-trial variability of firing patterns,

travel direction firing specificity, spike-phase precession relative

to theta-oscillation cycles, and multiple other features are

possible. During the data-mining process, unexpected features

and outliers may be noted, instabilities of neurons (‘‘drifts’’) can

be recognized, and artifacts can be identified visually. Such

experimenter-supervised judgments are also essential for evalu-

ating the quality of the quantified data processing.

Performance
CellExplorer takes advantage of MATLAB’s lowest-level graph-

ical plotting methods and has optimized and enhanced plotting

algorithms to make the user interface (UI) responsive. Bench-

marks were performed to characterize the performance of the

CellExplorer GUI (Figure S6), which consists of multiple graphical

elements with up to nine individual, simultaneous visualizations;

panels; and interface elements; all of which are updated as the

user navigates the single-cell data.

Most of the individual single-cell plots (Figures 3D and S5)

takes less than 80 ms to display (tested on an iMac from 2017



ll
NeuroResource

Please cite this article in press as: Petersen et al., CellExplorer: A framework for visualizing and characterizing single neurons, Neuron (2021), https://
doi.org/10.1016/j.neuron.2021.09.002
with a 4.2 GHz quad-core Intel i7 with 32 GB of random access

memory [RAM]), even when representing thousands of cells, but

a subset of the visualizations increases substantially with the

number of cells (the trace presentations with many data points

per cell; e.g., ACGs, ISIs, waveforms, and theta phase; Fig-

ure S6A). However, by introducing an overall display cap of

2,000 simultaneously random cells in these representations, all

of the visualizations take less than 80ms, except the connectivity

graph, in which all connections are always shown. Updating the

whole UI ranged from 180ms to 300ms, with the 2,000 cells cap,

for four and nine subpanels, respectively (Figure S6B). These

benchmarks capture CellExplorer’s performance on real data

and its scaling on larger dataset yet reflect, as well, the graphical

performance of MATLAB, with built-in graphical hardware sup-

port and the hardware configuration.

Putative cell-type characterization
Currently, the processing pipeline classifies putative cell types

based on two parameters, the width of the spike waveform

(measured by the waveform ‘‘trough-to-peak’’) and the bursti-

ness of spiking (measured via the rise time of the ACG [trise]; Pe-

tersen and Buzsáki, 2020; Senzai and Buzsáki, 2017). The ACG

of each cell (from –50ms to 50ms) is parameterized using a triple

exponential fit (Figure S7). One exponential fits the rise time of

the ACGs, and two further exponentials fit the burst-related

fast decay and the slower decaying part of the ACG. Using the

waveform and burstiness criteria, units are tentatively segre-

gated to narrow waveform (trough-to-peak % 450 ms), wide

waveform (trough-to-peak > 450 ms and trise > 6 ms), putative in-

terneurons, and the rest, as pyramidal cells (Figure 5A). These

boundaries were optimized separately on data from the hippo-

campus and visual cortex and can be adjusted for neurons in

other brain regions when running the processing module. In a

separate step, monosynaptic excitatory and inhibitory connec-

tions, identified based on their short-time CCGs (Barthó et al.,

2004; English et al., 2017), can serve to verify the goodness of

the first-order unit classification. In the dataset shown in Figure 5,

39% of the pyramidal cells were determined to be excitatory

(Figure S8A) and 5% of the narrow interneurons as inhibitory

cells. There was a high degree of excitatory convergence on pu-

tative, narrow interneurons (Figure S8B). Population-average

ACGs and waveforms are shown in Figure 5C. A t-SNE dimen-

sionality reduction further supported the reliability of the neuron

separation (Figure 5D), and an agglomerative clustering deter-

mined similar clusters (Figure 5E). When more ground-truth

data become available, the above classification scheme and

boundaries will inevitably change (Figure 5F). The reliability of

any unit-behavior correlation can be compared with cluster qual-

ity metrics (Figures 5G and 6; Schmitzer-Torbert et al., 2005),

increasing (or decreasing) the confidence in the validity of the

correlation in question.

Value of large inter-laboratory datasets
Although progress in discovery science often depends on an

investigator-unique approach to novel insights, standardization

of data processing and screening is essential in fields in which

big-data generation is achieved through collaborative efforts.

This applies to the current effort to quantitatively relate physi-
ology-based and genetically classified cell types (Klausberger

and Somogyi, 2008; McBain and Fisahn, 2001; Rudy et al.,

2011). In each experiment, typically only one or a few

neuron types can be identified. However, combining datasets

from numerous experiments and different laboratories can

generate physiological metrics, grounded by other ‘‘ground-

truth’’ data.

Figure 5 also serves to illustrate the feasibility and utility of

community-based approach. First- to third-level metrics of

neurons recorded from the same brain region and layer can be

combined from multiple experiments and laboratories and con-

trasted to the data quality of the units recorded in a single ses-

sion. An ever-growing dataset allows for more-reliable modality

separation and characterization of neuron types. For example,

the initial divisions of neurons into putative pyramidal cells and

narrow and wide interneurons can be further refined by quanti-

fying monosynaptic connections, increasing confidence of pyra-

midal-cell-interneuron separation as well as identifying subsets

of the unclassified group as interneurons (Figure 5A) (Mizuseki

et al., 2011; Petersen and Buzsáki, 2020; Peyrache et al.,

2015; Stark et al., 2013).

Single neurons identified by opto-tagging, juxtacellular, or

other direct means (Ciocchi et al., 2015; Klausberger and So-

mogyi, 2008; Royer et al., 2012; Senzai et al., 2019; Stark

et al., 2012; Zhang et al., 2013; Roux and Buzsáki, 2015)

can be used to link first- to third-level features of initially clas-

sified neurons to genetically defined neuron types (Figures 5A–

5E). Optogenetic methods can be supplemented by other

more-direct methods, such as simultaneous juxtacellular-

extracellular or intracellular-extracellular recordings (Figure 5F;

Harris et al., 2000; Neto et al., 2016). Having access to these

ground-truth labels may offer further support for the validity

of physiological classification. An expected outcome of such

a growing dataset, containing ground-truth-verified neurons,

is trained models for classifying diverse neuron types based

on physiological metrics alone. This is especially important

for recordings in model organisms for which genetic manipula-

tions are less tractable than in mice. Opto-tagged neurons can

be analyzed separately in CellExplorer (Figures S8G and S8H).

Further manual curation can be done when accessing the neu-

ron’s other characteristics, including waveforms, firing rates,

and connectivity. Communal contribution of ground-truth

data to CellExplorer is possible through the public GitHub re-

pository (Figure S8I; visit https://cellexplorer.org for tutorials

and further details).

Usingmany shared datasets, brain regions, different electrode

types, and other features can begin to be compared efficiently,

using t-SNE plots (Figure 5E). Such representations can highlight

inconsistencies and differences across recording sessions,

identify important regional and layer-specific differences, and

alert for interspecies characteristics (Figure 8).

CellExplorer uses and shares data through our laboratory da-

tabank (https://buzsakilab.com/wp/database; Petersen et al.,

2020). To demonstrate the value of inter-laboratory comparison,

we processed datasets from the CA1 region of the hippocampus

(Figure 6A) and visual cortex (Figure 6B) in freely moving mice

(Senzai et al., 2019; Petersen and Buzsáki, 2020; Petersen

et al., 2020) and comparable data from head-fixed mice from
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Figure 5. Community-based collaborations allow for improved single-neuron characterization

(A) Distribution of putative cell types (3,657 cells), including their projections, determined via spike-transmission CCG curves (Petersen and Buzsáki, 2020;

Petersen et al., 2020) Excitatory and inhibitory cells determined from monosynaptic connections are highlighted with black triangles and magenta squares

respectively. The marginal distributions are shown both as counts and probability distributions.

(B) Example ACGs for the three cell types and the ACG fit (black line).

(C) Top row: average peak-normalized ACGs of the three cell types. Bottom row: average waveform for the three cell types (Z scored).

(D) t-SNE representation of the same cell population.

(E) Agglomerative clusters of data with two (top) and three (bottom) clusters.

(F) 407 optogenetically identified neurons, including PV (184), SST (115), pyramidal cells (44), axo-axonic (35), VGAT (15) and VIP cells (14) projected onto the

same population of neurons as in (A) (Sources: Allen Institute and Buzsáki lab; English et al., 2017; Senzai et al., 2019; Siegle et al., 2021).

(G) Isolation distance in cluster space for the population shown in (A).

See also Figures S7 and S8.
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two large public datasets from the University College London

(UCL; Figure 6C; Steinmetz et al., 2019) and the Allen Institute

(Figure 6D; (Siegle et al., 2021). Through our database and

CellExplorer, we currently share more than 79,000 processed

neurons publicly. Datasets can be downloaded directly in Cel-

lExplorer and used as reference data or explored directly. The

infrastructure is designed toward continually growing the public

datasets and ground-truth data for discovery science, cross-

laboratory interactions, and reproducibility control. Processing

data collected in different laboratories and under different

investigators by the same program(s) will allow investigators to

standardize protocols and achieve greater reliability of interla-

boratory experiments between neuronal firing patterns and their

behavioral, cognitive correlates.
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NeuroScope2—a data viewer for raw and
processed data
To take advantage of the data types of CellExplorer and to back-

project the results to the recorded data, we also built a data

viewer, NeuroScope2 (Figure 7). It maintains many of the original

functions of NeuroScope (Hazan et al., 2006) and enhances its

performance to explore existing data, stream data being

collected, and handle multiple data streams simultaneously

(e.g., digital or analog traces, together with processed ephys

data). Because NeuroScope2 is written in MATLAB, it is hack-

able, adaptable, and easily expandable. It functions fully within

the data types of CellExplorer, using the session struct

for metadata and supports the data containers of CellExplorer.

NeuroScope2 can show the processed spikes and take
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Figure 6. Comparison of initial neuron classification by CellExplorer on large-scale datasets from three different laboratories

(A–D) Data from hippocampus (Petersen and Buzsáki, 2020) (A). Data from visual cortex (Senzai et al., 2019) (B). Hippocampal and visual neurons selected from

the UCL dataset (Steinmetz et al., 2019) (C). Visual cortex cells from the Allen Institute (Siegle et al., 2021) (D). Right panels across (A)–(D): Z scored waveforms

across all neurons (top) and distribution of instantaneous rates (1/interspike intervals) across all neurons. (A) and (B) are based on long home cage (sleep) data

(several hours), whereas (C) and (D) data are from short (�30 min) sessions in head-fixed, task-performing mice. See also Figure S8. Red, pyramidal cells; blue,

narrow waveform interneurons; cyan, wide waveform interneurons.
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advantage of the cell metrics to filter, group, and color single

units, as well as show behavioral, time series, states, and event

data (Figure 7B).

The interface is user friendly, with a single side panel for ac-

cessing most functions. Users can zoom, navigate, measure,

highlight, and select traces directly with the mouse cursor, mak-

ing manual inspection intuitive and efficient. NeuroScope2 can

also perform basic data processing on the viewed traces, e.g.,

filter the bandpass, perform temporal smoothing, generate sin-

gle-channel spectrogram, perform current source density

(CSD) analysis, and detect spikes and events.

Expandability of CellExplorer
CellExplorer comes with a long list of predefined metrics,

advanced plots, ground-truth data, and classification

schemes, allowing for standardized and efficient processing

and visualization. Users can add their own metrics (numeric,

strings, or other more-complex data) to the cell metrics, which

will be available in CellExplorer (see tutorial in the supple-

mental information and website for further details: https://

cellexplorer.org/datastructure/expandability/). Further expand-

ability and customization are achieved via MATLAB package

folders (‘‘+folders’’). Users can add their own custom calcula-

tions to the pipeline, implement custom classification
schemes, provide preferences, create their own CellExplorer

plots, and incorporate their ground-truth data. Relevant tuto-

rials, example code, and templates are included online.

DISCUSSION

We have developed CellExplorer, an open-source, MATLAB-

based resource for characterizing single neurons and neuron

types based on their biophysical features for collaborative anal-

ysis of data collected within and across laboratories. The

CellExplorer platform enables visualization and analysis for users

without the need to write code. Its modular format allows for fast

and flexible comparisons of a large set of preprocessed physio-

logical characteristics of single neurons and their interactions

with other neurons, as well as their correlation with experimental

variables. The code is publicly available on GitHub for users to

download and to use the same standardized processing module

on their local computers (Windows, OS X, and Linux). Cel-

lExplorer offers step-by-step online tutorials for first-time users.

It is linked to the Allen Institute reference atlas to relate recording

sites with structures and layers (Chon et al., 2019; Wang et al.,

2020; https://atlas.brain-map.org/) with potential for expansion

to other online resources that provide annotated data on putative

neuron types.
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Figure 7. NeuroScope2—a data viewer for raw and processed extracellular data acquired using multisite silicon probes, tetrodes, or
single wires

NeuroScope2 is written in MATLAB, maintaining many of the original features of NeuroScope (neurosuite.sourceforge.net) but with many enhancements, and

NueroScope2 is faster. It is easy to hack or modify and supports and relies on the data types of CellExplorer.

(A) Screenshot of the graphical interface, showing a 128-channel recording from the rat hippocampus (window duration = 1 s). Each colored groups of traces are

from the same silicon probe shank. The three vertical lines are detected temporal events (sharp-wave ripples; the detection-channel is highlighted in white). The

rasters below the traces are the spikes from curated single units. The left side panel consists of three tabs: general (panels: navigation, ephys traces, electrode

groups, channel tags, session notes and epochs, and Intan time-series), spikes (panels: spikes, cell metrics, and population dynamics), and other (panels: events,

states, time-series, and behavioral data).

(B) Various visualizations with NeuroScope2. Top row: population-average curves and spiking dynamics of the same population of cells as in (A) but color coded

and grouped using the putative cell type determined via CellExplorer (windowduration: 1 s). Second row: two digital transistor-transistor logic (TTL) pulses and 3D

accelerometer data (mounted on the animal’s head). Digital data captured using the Intan acquisition system (the TTL pulses are emitted by a 10-Hz camera and a

120-Hz behavioral tracking systems; window duration: 3 s). Third row: Ephys traces filtered in the theta band, with spikes of a single place cell projected on the

same trace (white points; window duration: 3 s), the right square shows the animal’s 2-dimensional spatial trajectory (gray line), and the white points indicate the

spatial location of the place field. Bottom row: event rater and states data (window duration: 50 s).
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Multiple-level characterization and classification of
single neurons
To correctly interpret neuron firing-behavior/cognition relation-

ships, numerous controls are needed to rule out or reduce the

potential contribution of spurious variables. The processing
10 Neuron 109, 1–15, November 17, 2021
module generates a battery of useful metrics for that purpose.

In addition to the first-level description of the biophysical charac-

teristics of single neurons, it computes brain-state-dependent

firing rates, interspike interval variation, and relationships be-

tween single neurons and spiking activity of the population and

http://neurosuite.sourceforge.net
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Figure 8. Exploration and comparison of metrics and cells across species, subjects, and brain regions

(A) Distributions of spike amplitudes and waveform width (quantified by the trough to peak metrics) for the three groups frommultiple CA1 datasets. Note inverse

relationship between spike amplitude and waveform for putative interneurons.

(B–D) t-SNE representations of putative cell types (B), species (C) (rat, and mouse in magenta and red, respectively), and subjects (D) (colors scaled across

subjects) for hippocampal neurons.

(E–I) Comparison of spike features of neurons recorded from CA1 pyramidal cells and visual cortex pyramidal cells. Significant differences are observed across

several basic metrics, including CV2 (E), burst index (F), trough-to-peak (G), waveform asymmetry (H), and waveform peak voltage (I).
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LFP (second level). When behavioral data are also available, it

can describe the relationship between single neuron-firing pat-

terns and routine behavioral parameters, such as immobility,

walking, respiration, and pupil diameter (third level) or other

task-independent measures, whose incidence or magnitude

may change in the task. The third-level metrics can help avoid,

e.g., inappropriately attributing spiking activity to high-level phe-

nomena, such as learning, perception, or decision making,

which are often linked to overt movement and autonomic

changes. Because these three-level metrics are independent

of particular experimental paradigms, they can be used as

benchmarks for assessing consistencies across experiments

performed by different investigators in the same laboratory or

across laboratories (Figure 6). Concatenating datasets obtained

from the same brain regions and layers will create a continuously

growing data bank. In turn, these datasets make it possible to

identify and quantify reliable boundaries among putative clusters

and suggest inclusion and exclusion of parameters for a more-

refined separation of putative neuronal classes. Sets from

different brain regions can be readily compared to identify salient

differences.

Although several statistical tests are available in CellExplorer,

it is not meant to substitute for rigorous quantification. Instead, it

is designed as a tool for flexible and fast comparison of param-

eters, facilitating visualization, interpretation, and discovery. It is

a complementary approach to dimensionality-reduction and

population-analysis methods. Because assemblies of neurons
consist of highly unequal partners (Buzsáki and Mizuseki,

2014), knowledge about the neuron-specific contributions to

population measures is critical in many situations (Nicolelis and

Lebedev, 2009). Such inequality may stem from unknowingly

lumping neurons of different classes together into a single type

and because even members of the same type belong to broad

and skewed distribution, which may contribute to different as-

pects of the experiment (Grosmark and Buzsáki, 2016).

Public cell metrics built from optotagged cells and
reference sessions
Various classification schemes have been developed to assign

extracellular spikes to putative pyramidal cells, interneurons,

and their putative subtypes, based on a variety of physiological

criteria. These include waveform features, firing rate statistics

in different brain states, embeddedness in various population

activities, firing patterns characterized by their ACGs, and puta-

tive monosynaptic connections to other neurons (Barthó et al.,

2004; Csicsvari et al., 1999; Fujisawa et al., 2008; Mizuseki

et al., 2009; Okun et al., 2015; Sirota et al., 2008). Increasingly

larger datasets will likely improve such physiology-based classi-

fication. However, the ground truth for these classifyingmethods

is largely missing. There is a lack of agreement about neuronal

‘‘types’’ across laboratories, and even for data collected in the

same laboratory, different criteria are applied in different exper-

iments. Optogenetic tagging (Boyden et al., 2005) offers such

grounding by connecting putative subtypes based on
Neuron 109, 1–15, November 17, 2021 11
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physiologically distinct features to their molecular identities.

Because, in a single animal, only one or a few neuron types

can be tagged optogenetically or identified by other direct

methods (Fosque et al., 2015; Klausberger and Somogyi,

2008), refinement of a library of physiological parameters should

be conducted iteratively, so that, in subsequent experiments, the

various neuron types can be recognized reliably by using solely

physiological criteria (English et al., 2017; Royer et al., 2012;

Senzai and Buzsáki, 2017, 2017; Roux and Buzsáki, 2015). In

turn, knowledge about the molecular identity of the different

neuronal components of a circuit can considerably improve the

interpretation of correlational observations provided by large-

scale extracellular recordings.

CellExplorer provides the end user with access to processed

cell metrics of a wide range of opto-tagged cells and reference

data (�79,000 neurons) collected in our database. These fea-

tures can serve as benchmarks for comparison with data

collected in any other laboratory and can assist with the initial

neuron classification into the broad groups of pyramidal cells

and interneurons; many of which are identified physiologically

by their monosynaptic connections. The derived features also

offer normative information about spike characteristics, firing

rates, and spike dynamics, as captured in Figure 8. The

ground-truth neurons are included in the CellExplorer GitHub re-

pository and can be loaded from CellExplorer, while the refer-

ence data must be downloaded from our webshare.

Comparison with other frameworks and tools
Several community efforts exist for machine- and human-read-

able databases of variousmorphological and transcriptomic fea-

tures of neurons (Ascoli et al., 2007; Cembrowski et al., 2016;

Sanchez-Aguilera et al., 2021; Tecuatl et al., 2021; Wheeler

et al., 2015; neuromorpho.org, https://hipposeq.janelia.org,

hippocampome.org/php/index.php), which served as the inspi-

ration for our efforts. However, post-spike sorting tools are

rare. NeuroExplorer (http://www.neuroexplorer.com/; Nex Tech-

nologies, USA) is the largest commercial solution, but costs

thousands of dollars for a license; it is written in C but supports

MATLAB and python code. Brainstorm (Tadel et al., 2011),

another application for analysis of brain recordings, recently

began supporting ephys data through the IN-Brainstorm expan-

sion (Nasiotis et al., 2019). However, Brainstorm is mostly

focused on noninvasive techniques, and the application has

limited tools for analyzing single cells. The user interfaces of

CellExplorer could potentially be integrated into Brainstorm.

FieldTrip (Oostenveld et al., 2011), is another very popular,

open-source MATLAB software toolbox for magnetoencepha-

lography (MEG), electroencephalography (EEG), and intracranial

EEG (iEEG) analysis but has a limited scope for single-cell

analysis.

CellExplorer is open source, with all code, data, and docu-

mentation available online. We chose MATLAB, a commercial

solution as a platform because it allowed us to build CellExplorer

on existing MATLAB tools and historically popular toolboxes and

also because MATLAB is a widely used coding platform in many

electrophysiological laboratories in academia. An alternative for

us was to build CellExplorer around NWB (Teeters et al., 2015).

NWB has numerous advantages but provides limited flexibility
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and is not ideal for a day-to-day data-analysis format with high

demand for flexibility. Therefore, other approaches that enhance

flexibility and alternative options are warranted. CellExplorer

supports reading spike data from NWB files, thus allows users

to combine the advantages of both platforms, including

CellExplorer’s machine-readable code. CellExplorer also sup-

ports saving the metrics to a NWB 2.0 file (R€ubel et al., 2019;

Teeters et al., 2015) and loading the NWB file back into the

default MATLAB cell_metrics struct. A dedicated NWB tutorial

is available here: https://cellexplorer.org/tutorials/nwb-tutorial/.

Handling the cell metrics in simpler JSON files is also supported.

CellExplorer could be translated to an open platform like python

or Julia, pending demand.
Outlook and future directions
Through community efforts, there are many future potential di-

rections for the use of CellExplorer. CellExplorer allows for

user-friendly submission of ground-truth (e.g., opto-tagged)

data that can be shared with the community via the GitHub re-

pository. To date, CellExplorer hosts the largest collection of

publicly available, characterized, single neurons. It also has the

largest collection of opto-tagged cells, which will help link phys-

iological markers and characteristics to genetic traits. Through

implementation of publicly shared data by contributing neurosci-

entists, its scope can be expanded further for better coverage of

several brain regions, species, and behaviors.
Development and availability
Development takes place in a public-code repository at https://

github.com/petersenpeter/CellExplorer. All examples in this

article have been calculated with the pipeline and plotted with

CellExplorer. Extensive documentation, including installation

instructions, tutorials, and a description of all metrics and their

calculations, is available at https://cellexplorer.org and hosted

at the GitHub repository. CellExplorer is available for MATLAB

2017B and forward and for the operating systems Windows,

OS X, and Linux. Compiled versions of the graphical interfaces

(CellExplorer, NeuroScope2, and the session GUI) are available

at the CellExplorer website for usage on computer systems

without a MATLAB license. More information can be found at

https://cellexplorer.org. All data presented are available from

https://buzsakilab.com/wp/database/ (Petersen et al., 2020).

We pledge to continue to support CellExplorer and are eager

to incorporate data generated by other laboratories. CellExplorer

should be viewed as a small, but necessary, step toward FAIR

practice in collaborative neuroscience and the emerging novel

technical platforms that will facilitate data sharing and interlabor-

atory collective research.
Tutorials
Two tutorials are available in the STAR Methods section: a gen-

eral tutorial on the full pipeline, and a tutorial on how to add your

ownmetrics. There are many additional, detailed tutorials online,

which cover the generation of the metadata struct, the manual

curation process, generating spike raster plots, connections,

performing opto-tagging, using ground-truth data, exporting

figure, and many other topics.

http://neuromorpho.org
https://hipposeq.janelia.org
http://hippocampome.org/php/index.php
http://www.neuroexplorer.com/
https://cellexplorer.org/tutorials/nwb-tutorial/
https://github.com/petersenpeter/CellExplorer
https://github.com/petersenpeter/CellExplorer
https://cellexplorer.org
https://cellexplorer.org
https://buzsakilab.com/wp/database/
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Tutorials are available at https://cellexplorer.org/tutorials/

tutorials.
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andBuzsáki, G. (2012). Control of timing, rate and bursts of hippocampal place

cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775.

R€ubel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Clack, N., Davidson, T.J.,

Dougherty, M., Fillion-Robin, J.-C., Graddis, N., et al. (2019). NWB:N 2.0: an

accessible data standard for neurophysiology. BioRxiv. https://doi.org/10.

1101/523035.

Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011). Three groups of in-

terneurons account for nearly 100% of neocortical GABAergic neurons. Dev.

Neurobiol. 71, 45–61.

Sanchez-Aguilera, A., Wheeler, D.W., Jurado-Parras, T., Valero, M., Nokia,

M.S., Cid, E., Fernandez-Lamo, I., Sutton, N., Garcı́a-Rincón, D., de la Prida,

L.M., and Ascoli, G.A. (2021). An update to hippocampome.org by integrating

single-cell phenotypes with circuit function in vivo. PLoS Biol. 19, e3001213.

Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K., and Redish, A.D.

(2005). Quantitative measures of cluster quality for use in extracellular record-

ings. Neuroscience 131, 1–11.

Sejnowski, T.J., Churchland, P.S., and Movshon, J.A. (2014). Putting big data

to good use in neuroscience. Nat. Neurosci. 17, 1440–1441.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Hippocampal dataset Petersen and Buzsáki, 2020 https://buzsakilab.com/wp/projects/entry/4919/

Visual cortex dataset Senzai et al., 2019 https://buzsakilab.com/wp/projects/entry/22682/

UCL dataset Steinmetz et al., 2019 https://figshare.com/articles/dataset/Eight-probe_

Neuropixels_recordings_during_spontaneous_

behaviors/7739750

https://buzsakilab.com/wp/projects/entry/52347/

Allen Institute dataset Siegle et al., 2021 https://allensdk.readthedocs.io/en/latest/visual_

coding_neuropixels.html

https://buzsakilab.com/wp/projects/entry/52635/

Software and algorithms

CellExplorer Petersen and Buzsáki, 2020 https://cellexplorer.org

MATLAB MathWorks https://www.mathworks.com
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, György

Buzsáki (gyorgy.buzsaki@nyulangone.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data are available from our databank at https://buzsakilab.com/wp/database/ (Petersen et al., 2018). All code is available at Gi-

tHub: https://github.com/petersenpeter/CellExplorer. All resources, including tutorials and documentation are on the CellExplorer

website at: https://cellexplorer.org/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental data were collected in previous studies. Details of experimental methods and subject information are available in the

original studies (Petersen and Buzsáki, 2020; Senzai et al., 2019; Siegle et al., 2021; Steinmetz et al., 2019).

METHOD DETAILS

CellExplorer layout and preferences saved between sessions
The display preferences are saved between sessions, which provides a simpler interface for novice users, while maintaining a more

advanced display for experienced users. The preferences can be reset from the view menu by clicking Reset Layout/Preferences, or

by deleting the preference file last_preferences_CellExplorer.mat located in the folder calc_CellMetrics.

General tutorial
This tutorial covers the processing, from generating the necessary session metadata using the template, running the processing

pipeline, opening multiple sessions for manual curation in CellExplorer, and finally using the cell_metrics for filtering cells. The tutorial

is also available as a MATLAB script: (tutorials/CellExplorer_Tutorial.m).

1. Define the basepath of the dataset to process. The dataset should ideally consist of the raw data basename.dat and spike

sorted data.

basepath = ‘/your/data/path/basename/’;

cd(basepath)
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2. Generate the session metadata struct using the template script and display the metadata in the session GUI (Figure S2)

session = sessionTemplate(basepath, ‘showGUI’, true);You can use theGUI to inspect andmanually addmetadata. Make sure

the extracellular tab is filled out correctly for your data (Figure S2C), The template script can extract existing metadata from a

NeuroScope compatible basename.xml file, from intan’s info.rhd, from KiloSort’s rez.mat fiel and from a basename.sessionIn-

fo.mat file (buzcode).

3. Run the cell metrics pipeline ProcessCellMetrics using the session struct as inputcell_metrics = Process

CellMetrics(‘session’, session, ‘showGUI’, true);Setting showGUI to true will display the session GUI with a CellExplorer tab

allowing you to verify parameters and settings (screenshot shown in Figure S2D). You can click the button Verify metadata

to show a summary table with metadata relevant to the processing. Fields requiring your attention will be highlighted in red;

optional fields in blue.

4. Visualize the cell metrics in CellExplorer

cell_metrics = CellExplorer(‘metrics’, cell_metrics);

5. You can repeat step 1-4 on a couple of datasets and load them together in CellExplorer, providing several paths

basepaths = {’path/to/session1’,’path/to/session20};
basenames = {’session1’,’session20};
cell_metrics = loadCellMetricsBatch(‘basepaths’, basepaths, ‘basenames’, basenames);

cell_metrics = CellExplorer(‘metrics’, cell_metrics);

6. Curate your cells in CellExplorer and save the metrics via the file menu in CellExplorer.

7. You may use the script loadCellMetrics for further analysis using the metrics as filters:

1. Get cells labeled as Interneuron

cell_metrics_idxs1 = loadCellMetrics(‘cell_metrics’, cell_metrics, ‘putativeCellType’, {’Interneuron’});

2. Get cells that have the groundTruthClassification label Axoaxonic

cell_metrics_idxs2 = loadCellMetrics(‘cell_metrics’, cell_metrics, ‘groundTruthClassification’, {’Axoaxonic’});
Expandability tutorial: add you own custom metrics
This tutorial covers how to add your custom cell metrics. For single value metrics you have two options: numeric values or string

arrays. Numeric metrics can be plotted in the custom group plot in CellExplorer. String arrays allow you to group your data by the

unique strings set within features, and can be plotted in discrete values. All features in the cell metrics are automatically available

in CellExplorer if they contain N values (N: number of cells).

Add a string metric to your cell_metrics
Let’s say you want to add a cell metric describing cortical layers for each cell, using predefined labels (Layer 1 to Layer 6). This can be

stored as a char cell array, e.g.:

cell_metrics.corticalLayer = {’layer 50,’layer 4’,’layer 20,’layer 2/30,’layer 1’}; % nCells = 5
Add numeric values to your cell metrics
Let’s say you want to add the preferred orientation of a drifting grating presented to cells in the visual cortex. This will be stored as

numeric values, e.g.:

cell_metrics.pref_ori_dg = [90,25,45,80,30]; % nCells = 5

Now, load the cell metrics into CellExplorer to visualize them. The fields will appear in the drop-down menus in the custom

group plot:

cell_metrics = CellExplorer(‘metrics’,cell_metrics);

If you open multiple sessions in CellExplorer, the custom metrics will automatically be imported. Cells without numeric values will

have NaN values assigned and empty strings for missing char fields.

You can also incorporate response curves and other more advanced metrics, and perform custom calculations in the

ProcessCellMetrics script by using the custom calculation implementation: https://cellexplorer.org/pipeline/custom-calculations/.

For further plotting options, please see the website: https://cellexplorer.org/datastructure/expandability/.
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Supplementary Figure 1. Flow charts, related to figure 2. A) Generating the metadata structure for a recording session. 
B) Running the processing pipeline. C) Running the CellExplorer module for manual curation and exploration. 
CellExplorer data structures are shown in yellow, MATLAB functions in green, and the input data in grey. Input from the 
Buzsáki lab database is shown in purple (Petersen et al., 2020). 
 



 
Supplementary Figure 2: Session metadata GUI, related to figure 2. The graphical interface for inspection and entry 
of session level metadata follows the organization of the Matlab struct, with a tab for each field type. A. General 
information about the session, including name, data, duration, location, and notes. B. Animal metadata capturing sex, 
species, strain and genetic line, but also action performed on the animal including probe implants, optic fiber implants, 
surgeries, and virus injection. C. Basic metadata for the extracellular data, including channel count, sampling rate, 
equipment and electrode groups. D. The session GUI is also used as a graphical interface for the processing pipeline (with 
a dedicated tab), allowing the user to change parameters, view settings, validate metrics, and see and edit the full session 
metadata structure, that serves as input to the pipeline. 
 



 
Supplementary Figure 3: Datatypes related to figure 2. The data structure. A detailed description is available online at 
CellExplorer.org/datastructure/data-structure-and-format. session, spikes, cell_metrics, trials are defined data types, 
while behavior, firingRateMap, events, manipulation, timeseries, states, channelinfo are data containers.  
 
 
 
 
 
 
 



 
Supplementary Figure 4. Population data plots, related to figure 3. Top row: The three standard representations: 
custom plot (A), classic representation (B), and t-SNE plot (C). Bottom row: The custom plot has 3 further data 
representations: a 3-dimensional plot with custom marker size (D), 2D plot with marginal histograms (E), and one-
dimensional raincloud plots (F), combining 1D scattered neurons with error bars histogram and KS significance test (line 
thickness represent significance levels). Color-coded according to cell types: pyramidal cell (red), narrow interneuron 
(blue), wide interneuron (cyan).  

 
 



 
Supplementary Figure 5. The various single-cell plots, related to figure 3. Most single cell data-visualizer have three 
representations: single neurons (with neuronal connections highlighted for a subset of the plots), all neurons (absolute or 
normalized representations), and an image representation (normalized data, with selected cell highlighted by a white line). 
A. Waveform representations: waveform of a selected single neuron, waveforms of all neurons (z-scored), and their image 
representation. The white line in the image representation corresponds to the selected neuron. B. Autocorrelograms (ACGs) 
for the single neuron, ACGs for all neurons and their image representation. C. ACGs on a log scale (single, all, image).  D, 
E. Interspike interval distributions (ISIs) on a log scale (single, all image) for two different normalizations (D, rate (Hz); 
E, occurrence). F. Theta phase spike histogram for the single interneuron (black line) and those of pyramidal neurons 
monosynaptically connected to the interneurons (blue lines; left) and all neurons in the same session (middle and right 
panels). G. Firing rate map for a pyramidal cell. Session average (left) and trial-wise heatmap. H. Connectivity graph 
showing all monosynaptic modules in the dataset. A module is highlighted and enhanced (top right). I. Physical location 
of neurons recorded in the same animal using trilateration. Eight-shank silicon probe recording (8 sites on each shank). 
Red, pyramidal cells. Blue, interneurons. Monosynaptic connections between two pyramidal cells and a target interneuron 
are also shown (blue lines) J. Average waveform across channels of the single interneurons shown in most panels. A-F, 
H-J: a narrow interneuron, G: Spatial firing rate of a pyramidal cell on a linear track. 
 
 



 
Supplementary figure 6. Benchmarks of the CellExplorer user interface (UI) related to figure 3. A. Display times for 
single-cell plots, quantified by the number of cells displayed. The slowest plots are the ones with a trace for each cell 
(ACGs, ISIs, waveforms, ISIs, theta phase) and the connectivity graph. By default, a maximum of 2000 traces are drawn 
capping the processing time below ~80 ms for all plots except the connectivity graph for which all connections are 
shown. B. UI display times when switching between units for the three layouts shown in figure 3B (approximately 110 ms 
for layout 1+3 with 4 subplots; blue lines. 180 ms for layout 3+3 with 6 subplots; green lines) and 290 ms (layout 3+6 with 
9 subplots; in red), respectively. Dark gradient colored lines (dark red, green, and blue) indicate where there were no limits 
on the number of traces plotted for single-cell plots, and the light gradient lines show display times with a maximum of 
2000 random traces. C. Benchmarks of cell metrics file loading time. On average, 230 cells can be loaded per second 
quantified across 180 sessions with various cell count (red dots and linear fit in red). By storing the data on a local SSD, 
the loading time can be decreased and attain cell loading above 500 cells per second. Graphical benchmarks were performed 
on an iMac from 2017 with a 4.2GHz Quad-Core Intel i7 with 32GB of ram. File load time tests were performed on a 
custom PC running Window 10, with a 512GB Samsung 870 EVO SSD (SSD) and the NYU Langone Health network 
storage solution “Research Isilon” (Network drive). 
  



 

 
Supplementary Figure 7. ACG fits related to figure 5. A. Three examples of typical autocorrelograms for a wide 
interneuron (left column) narrow interneuron (middle column) and a pyramidal cell (right column). The exponential 
components are plotted in the lower row. B. The R2 values for each fit across the 4000 cells plotted against the number of 
spikes. C-D 𝝉rise (C) and 𝝉decay (D) values plotted against the firing rate. Color coded by putative cell type. 
 
 
 
  



 
 

 
Supplementary Figure 8. Cell type separation, ground truth- and reference data related to figure 5.  
A.  Connectivity by cell types. Each panel is a projection pattern showing connection from one cell type to another, both 
excitatory (blue) and inhibitory (red). The two bars in the same color are normalized by the transmitter and receiver 
population count. B. Every synaptic connection is sorted by the spike waveform trough-to-peak, showing a clear separation 
between which cells transmit and receive on the basis of spike waveform features. C. Convergence and divergence by cell 
types. D-E. Correlation between putative clusters and various metrics. D: Narrow interneuron vs pyramidal cells, E: Wide 
interneurons vs pyramidal cells. F. Single session (dots) data compared with data from 30 reference sessions (shaded 
zones). G. Opto-tagged data can be processed and curated directly in CellExplorer. H. Example of a PSTH of a PV-
expressing neuron to 500 ms square light pulses. Raster plot and average responses to the light pulses are visualized in 
CellExplorer. I. The CellExplorer framework allows for sharing ground truth and reference data directly with the end-user. 
End users can upload their ground truth data to the CellExplorer GitHub repository for communal sharing (see the opto-
tagging tutorial at  CellExplorer.org). 
 
  



 
Metrics Description/Calculation Type 
General metrics     
general struct containing general information about the session struct 
  .basename the name of the session char 
  .basepath the path to the raw data char 
  .cellCount number of cells in the current session double 
  .ccg cross correlogram matrix between cell pairs within a session 201xNxN double 
  .ccg_time time vector describing the time bins in the ccg (standard: -100ms:1ms:100ms) 201x1 double 
animal (name) Name of animal subject 1xN cell array of charactor 

vectors 
general.animal struct containing animal specific information struct 
  .sex Sex of the animal [Male, Female, Unknown] char 
  .species Animal species [Rat, Mouse,...] char 
  .strain Animal strain [Long Evans, C57B1/6,...] char 
  .geneticLine Genetic line of the animal char 
sessionName Name of session 1xN cell array of charactor 

vectors 
general.session struct containing session specific information struct 
  .sessionType [Acute, Chronic] 1xN cell array of charactor 

vectors 
  .spikeSortingMethod   char 
  .investigator Name of the investigator char 
general.processinginfo Struct containing processing info: date of the processing, version of the script, function 

name… 
  

  .params Struct containing the input parameters used by ProcessCellMetrics   
UID The ID for each cell unique within a session (1:nCells) 1xN double 
cellID   1xN double 
cluID clustering ID from spike sorting pipeline 1xN double 
batchIDs only present in batch sessions. The batch ids the cells 1xN double 
putativeCellType Putative cell type 1xN cell array of charactor 

vectors 
brainRegion Brain region acronyms from Allan institute Brain atlas. 1xN cell array of charactor 

vectors 
shankID Shank number / electrode group 1xN double 
labels Custom labels 1xN cell array of charactor 

vectors 
groups struct containing groups struct 
tags struct containing tags struct 
Spike event-based metrics     
spikes.times struct containing spike times   
spikeCount Spike count of the cell from the entire session 1xN double 
firingRate Firing rate in Hz: Spike count normalized by the interval between the first and the last 

spike. 
1xN double 

cv2 Coefficient of variation 1xN double 
refractoryPeriodViolation Refractory period violation (‰): Fraction of ISIs less than 2ms. 1xN double 
burstIndex_Mizuseki2012 Burst index: Fraction of spikes with a neighboring ISI < 6ms as defined in Mizuseki et al. 

Hippocampus 2012 
1xN double 

Waveform metrics     
waveform struct containing waveform information struct 
  .filt  Average filtered waveform from peak chanel (µV) 1xN cell array of numeric vectors 
  .filt_std Std of average filtered waveform (µV) 1xN cell array of numeric vectors 
  .raw Average raw waveform from peak chanel (µV) 1xN cell array of numeric vectors 
  .raw_std Std of average raw waveform (µV) 1xN cell array of numeric vectors 
  .time Time vector (ms) 1xN cell array of numeric vectors 
maxWaveformCh peak channel (0-indexed) 1xN double 
maxWaveformCh1 peak channel (1-indexed) 1xN double 
maxWaveformChannelOrder linearized channel position   
polarity waveform polarity   
troughToPeak waveform trough to peak interval (µs) 1xN double 
ab_ratio waveform peak to peak ratio 1xN double 
peakVoltage amplitude of the filtered waveform (µV). max(waveform)-min(waveform). 1xN double 
troughtoPeakDerivative derivative of waveform trough to peak interval (µs) 1xN double 
Autocorellogram (ACG) 
metrics 

    

acg struct containing autocorrelogram information struct 
  .wide [-1000ms:1ms:1000ms] 1xN cell array of numeric vectors 
  .narrow [-50:0.5:50] 1xN cell array of numeric vectors 
  .log10 [log-intervals spanning 1ms:10s] 1xN cell array of numeric vectors 



thetaModulationIndex defined by the difference between the theta modulation trough (mean of autocorrelogram 
bins 50-70 ms) and the theta modulation peak (mean of autocorrelogram bins 100-140ms) 
over their sum. 

1xN double 

ACG fit metrics Fit to the autocorrelogram with a triple-exponential equation ( fit = cexp(-x/τ_decay)-
dexp(-x/τ_rise) ) 

1xN double 

acg_asymptote the asymptote of the ACG fit 1xN double 
acg_c ACG fit: amplitude 1xN double 
acg_d ACG fit: amplitude 1xN double 
acg_fit_rsquare ACG fit R-square (the goodness of the fit) 1xN double 
acg_h ACG fit: amplitude 1xN double 
acg_refrac ACG fit: refractory period (ms) 1xN double 
acg_tau_burst ACG fit: tau bursts (ms) 1xN double 
acg_tau_decay ACG fit: tau decay (ms) 1xN double 
acg_tau_rise ACG fit tau rise (ms) 1xN double 
burstIndex_Royer2012 Burst index (Royer 2012) 1xN double 
burstIndex_Doublets Burst index doublets 1xN double 
Interspike Intervals (ISI) 
metrics 

    

isi struct with interspike interval information struct 
  .log10  [log-intervals spanning 1ms:10s] 1xN cell array of numeric vectors 
Putative connections     
putativeConnections putative connections determined from cross correlograms struct 
putativeConnections.excitatory Excitatory connection pairs 2xP double 
putativeConnections.inhibitory Inhibitory connection pairs 2xP double 
synapticEffect Excitatory' or 'Inhibitory' 1xN cell array of charactor 

vectors 
synapticConnectionsIn Synatic connections count 1xN double 
synapticConnectionsOut Synatic connections count 1xN double 
Event metrics     
events event time series struct 
  .'name' the event curve 1xN cell array of numeric vectors 
_modulationIndex modulation index for each event types 1xN double 
_modulationSignificanceLevel modulation significance level for each event types   
_modulationPeakResponseTime modulation peak response time for each event types 1xN double 
Firing rate map metrics     
firingRateMaps struct with (spatial) linearized firing rate maps struct 
  .ratemap Primary firing rate map 1xN cell array of numeric vectors 
  .'ratemapName' Other firing rate maps 1xN cell array of numeric vectors 
spatialCoverageIndex Spatial coverage index. Defined from the inverse cumulative distribution, where bins are 

sorted by decreasing rate. The 75 percentile point defines the spatial coverage by the 
fraction of bins below and above the point (defined by Royer et al., NN 2012) 

1xN double 

spatialGiniCoeff Spatial Gini coefficient. Defined as the Gini coefficient of the firing rate map 1xN double 
spatialCoherence Spatial Coherence. Defined by the degree of correlation between the firing rate map and a 

hollow convolution with the same map 
1xN double 

spatialPeakRate Spatial peak firing rate (Hz). Defined as the peak rate from the firing rate map 1xN double 
placeFieldsCount Place field count: Number of intervals along the firing rate map that fulfills a set of spatial 

criteria: minimum rate of 2Hz and above 10% of the maximum firing rate bin and 
minimum of 4 connecting bins. The cell further has to have a spatial coherence greater than 
0.6 (Mizuseki et al ?). 

1xN double 

spatialSplitterDegree   1xN double 
placeCell Place cell (determined from the Mizuseki spatial metrics) 1xN binary 
Manipulation metrics     
manipulations manipulations time series struct 
  .'manipulationName'   1xN cell array of charactor 

vectors 
Response curves metrics     
responseCurves response curves struct 
  .'responseCurveName'   1xN cell array of charactor 

vectors 
Quality metrics     
refractoryPeriodViolation Refractory period violation (‰): Fraction of ISIs less than 2ms 1xN double 
isolationDistance Isolation distance as defined by Schmitzer-Torbert et al. Neuroscience. 2005. 1xN double 
lRatio L-ratio as defined by Schmitzer-Torbert et al. Neuroscience. 2005. 1xN double 
Hippocampal sharp wave ripple metrics   
deepSuperficial Deep-Superficial region assignment [Unknown, Cortical, Superficial, Deep]   
deepSuperficialDistance Deep Superficial depth relative to the reversal of the sharp wave (µm) 1xN double 
Hippocampal theta oscillation metrics   
thetaPhasePeak Theta phase peak 1xN double 
thetaPhaseTrough Theta phase trough 1xN double 



thetaEntrainment Theta entrainment 1xN double 
thetaModulationIndex Theta modulation index. determined from the ACG 1xN double 
Firing rate stability metrics     
firingRateGiniCoeff The Gini coefficient of the firing rate across time 1xN double 
firingRateCV Standard deviation of the "firing rate across time" divided by the mean' 1xN double 
firingRateInstability Mean of the absolute differential "firing rate across time" divided by the mean. 

abs(diff(firingRateAcrossTime)) 
1xN double 

 
Supplementary Table 1: Cell metrics, related to figure 1. An incomplete list of the standard cell metrics. The full list 
is available online at CellExplorer.org/datastructure/standard-cell-metrics  
 

Functions Description 

sessionTemplate A template script which automatically extracts and imports relevant metadata 

gui_session A graphical user interface (GUI) for inspection and entry of metadata 

ProcessCellMetrics The processing module 

CellExplorer The main graphical interface of CellExplorer 

preferences_CellExplorer Preferences for the graphical interface 

preferences_ProcessCellMetrics Preferences for the processing module 

NeuroScope2 An Ephys visualizer built upon the data structure of CellExplorer 

gui_MonoSyn GUI for manual curation of monosynaptic connections 

gui_DeepSuperficial GUI for manual curation of the depth assignment of neurons based on depth-related 
changes of sharp-wave-ripples (Mizuseki et al., 2011) 

loadCellMetricsBatch Batch loading script for combining cell_metrics structs across sessions 

loadCellMetrics Script for loading cell_metrics with built-in common text filters (putative cell type, brain 
region, synaptic effect, label, animal, tags, groups, etc.) 

loadSpikes Script for importing and loading spike data 

saveStruct Saving to various file containers (e.g. cellinfo, behavior, session, events, states) 

saveCellMetrics Saving cell metrics 
Supplementary Table 2. Primary MATLAB functions of the CellExplorer framework, related to Star method, 
related to figure 2. All code is available at GitHub: https://github.com/petersenpeter/CellExplorer. 
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