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Abstract

Biochemical mechanisms are temperature dependent. Brain temperature shows wide variations across brain states, and such changes
may explain quantitative changes in network oscillations. Here, we report on the relationship between various hippocampal sharp wave
ripple features to brain temperature. Ripple frequency, occurrence rate, and duration correlated with temperature dynamics. By focal
manipulation of the brain temperature in the hippocampal CA1 region, we show that ripple frequency can be increased and decreased
by local heating and cooling, respectively. Changes of other parameters, such as the rate of sharp wave-ripple complex (SPW-R) and rip-
ple duration were not consistently affected. Our findings suggest that brain temperature in the CA1 region plays a leading role in affect-
ing ripple frequency, whereas other parameters of SPW-Rs may be determined by mechanisms upstream from the CA1 region. These
findings illustrate that physiological variations of brain temperature exert important effects on hippocampal circuit operations.

NEW & NOTEWORTHY During physiological conditions, brain temperature fluctuates approximately 3�C between sleep and active
waking. Here, we show that features of hippocampal ripples, including the rate of occurrence, peak frequency, and duration are cor-
related with brain temperature variations. Focal bidirectional manipulation of temperature in the hippocampal CA1 region in awake
rodents show that ripple frequency can be altered in the direction expected from the correlational observations, implying that temper-
ature plays a significant role.

hippocampus; sharp wave ripples; temperature; thermal perturbation

INTRODUCTION

Hippocampal-neocortical communication is thought to be
essential for different forms of cognitive behaviors, most nota-
ble for memory, imagination, and planning (1, 2). A key physi-
ological pattern in this communication during “offline” brain
states (3) is the sharp wave-ripple complex (SPW-R; 4). In
recent decades, SPW-Rs were the subject of extensive investi-
gation and implicated in a plethora of functions including
memory consolidation (5), sleep homeostasis (6), synaptic
plasticity (7), and metabolic regulation (8). A particularly
interesting debate revolves around the similar versus distinct
features of SPW-Rs that occur in the waking resting animal
and nonrapid eye movement (nonREM) sleep (9). An attrac-
tive feature of SPW-Rs is their time-compressed spike sequen-
ces of past waking experience and their potential to affect

future behavior (10–13). Although both forward and reverse
replays are present during both waking and nonREM sleep,
wake and sleep SPW-Rs may have potentially different func-
tions, given that they are embedded in different constella-
tions of network states. In the waking animal, SPW-Rs may
serve memory retrieval (9), memory maintenance (14), stabili-
zation of place cells (15), planning of actions and travel paths
(12, 16), or a combination of these functions (17, 18). In con-
trast, SPW-Rs during nonREM sleepmay be critical to consoli-
date long-term memories (19), for homeostatic maintenance
(6), and to affect endocrine functions (8).

The macroscopic features of SPW-Rs, such as their inci-
dence, amplitude, duration, and frequency, may also be dif-
ferent in the sleeping and waking animals. The extracellular
sharp wave (SPW) is produced by synchronous transmem-
brane currents in the apical dendrites of CA1 pyramidal cells,
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which is triggered by the synchronous CA3 inputs targeting
the mid-stratum radiatum (20). The CA3 volley also excites
CA1 interneurons and their interaction induces a short-lived
fast oscillation (the “ripple”; 110–160 Hz) detected in the local
field potential (4, 21–23). The ripple frequency is determined
mainly by the local interaction of perisomatic interneurons
(22) and the synchrony of pyramidal neuron spikes in each
ripple wave within the CA1 region (24), but it is not known
why ripple frequencies in the waking and sleeping brain are
different. One potential explanation is brain temperature.
During physiological conditions brain temperature fluctua-
tions range 2.5�C in humans (25) and 3�C in rodents and the
strongest determinant of brain temperature is wake-sleep
state rather than circadian phase (26). Previous research has
already established that neuronal sequences in birds and slow
oscillations and sleep spindles in mammals decelerate when
temperature decreases (27–36) and that brain temperature reg-
ulation may have restorative functions to the brain (26, 37). To
test the hypothesis that ripple features can be explained by
temperature, we first examined the correlation between fluctu-
ation of brain temperature and various parameters of SPW-Rs.
To offer more direct evidence for the importance of brain
temperature in regulating ripples, we artificially cooled and
warmed local volume of tissue in the dorsal CA1 region. We
observed a strong correlation between hippocampal tempera-
ture changes and various aspects of SPW-Rs in the sleep-wake
cycle and show that local cooling andwarming affect ripples.

METHODS

Subjects and Surgery

Rats (adult male Long–Evans, 250–450 g, 3–6 mo old)
were kept in a vivarium on a 12-h light/dark cycle and were
housed 2 per cage before surgery and individually after it. All
experiments were approved by the Institutional Animal Care
and Use Committee at New York UniversityMedical Center.

Animals were anesthetized with isoflurane anesthesia and
craniotomies were performed under stereotaxic guidance. A
custom designed, 3-D printed base (38, Supplemental Fig. S1A)
was attached to the skull with metabond, serving as a base for
the probe implants and protection. A 12 cm by 12 cm sheet of
copper mesh (Dexmet Corporation, Wallingford, CT) had been
attached to the base with dental cement (Pearson Dental,
Sylmar, CA) before surgery, from which a protecting cap was
formed later (38). Rats (Supplemental Table S1) were implanted
with either silicon probes or tungsten wire triplets (50 mm di-
ameter) to record local field potential (LFP) and spikes from
the CA1 pyramidal layer. The tip of the cooling device was
implanted at antero-posterior (AP): �2.5 mm, medial-lat-
eral axis (ML): 2.5 mm, and lowered 2.5 mm below the
brain surface, after which it was attached to the skull and
base. Silicon probes (NeuroNexus, Ann-Arbor, MI and
Cambridge Neurotech, Cambridge, UK) were implanted in the
dorsal hippocampus [antero-posterior (AP) �3.5 mm from
Bregma and 2.5 mm from the midline along the medial-lateral
axis (ML)]. Silicon probes were mounted on custom-made
microdrives to allow their precise vertical movement after im-
plantation (38). Probes were implanted above the target region
by attaching the microdrives to the skull with dental cement.
Craniotomies were sealed with sterile wax. Stainless steel

screws were implanted above the cerebellum, serving as
ground and reference, respectively, for electrophysiological
recordings. At the end of electrode and cryoprobe implanta-
tion, the copper mesh was folded upward, connected to the
ground screw, and painted with dental cement. The mesh acts
as a Faraday cage, shielding the recordings from environmen-
tal electric noise and muscle artifacts, provides structural sta-
bility and keep debris away from the probe implants. After
postsurgery recovery, probes were moved gradually in 50-mm
to 150-mmsteps until they reached the CA1 the pyramidal layer.
The pyramidal layer of the CA1 region was identified by physi-
ological markers: increased unit activity, strong h oscillations,
and phase reversal of the sharp-wave ripple oscillations (39).

Peltier Cooling Device

A passively cooled peltier device was attached to a silver
wire that conducted cooling to the CA1 region of the hippo-
campus. The hot side of a peltier device (00301-9X30-10RU2,
TE Technology, Inc., Traverse City, MI) was attached to a
copper heatsink (5 mm � 5 mm, Enzotech MOS-C10 Forged
Copper MOSFET Heatsinks) with heat-conductive adhesive
(Arctic Silver Thermal Adhesive, Arctic Silver Inc., Visalia,
CA). The heatsink was manually expanded and copper mesh
was soldered to it to increase the surface to air ratio (surface
area). A 15-mm long silver wire (200 mm diameter, 782000,
A-M systems, Sequim, WA) was attached to the cold side of
the peltier device with heat conductive adhesive. A 5-mm
long polyimide tube (EW-95820-05, Cole-Parmer, Vernon
Hills, IL) was attached around the silver wire, sealed, and a
temperature sensor (223Fu3122-07U015, Semitec USA Corp.,
Torrance, CA) was attached to the tube. Silver wire (1 mm)
was exposed at the tip of the cooling device (Fig. 4A).

Electrophysiological Recordings

Animals were handled daily and accommodated to the ex-
perimenter before surgery. After recovery from surgery, the
animals were recorded in their home cages and on a set of
behavioral mazes. The behavioral sessions typically lasted
40 min, whereas the total recording time ranged from a cou-
ple of hours to a full 24-h session.

Sharp Wave Ripple Detection

A single LFP signal was bandpass filtered in the ripple
band (80—240 Hz), and ripples were detected with a fixed
minimum amplitude of 48 mV and further fulfilling a dura-
tion criterion of 20ms above 182 mV. Ripple events with a du-
ration >150 ms were excluded to minimize artifacts. The
detected events were further manually inspected using
NeuroScope2 (40), and noise artifacts and false detected
events were removed, typically occurring due to electrical
artifacts or scratching artifacts. When possible, a reference
channel outside the CA1 was also used to filter out false posi-
tive ripple events. The channel used for the ripple detection
was visually defined from individual ripples, where the rip-
ple power was deemed highest.

Sharp Wave Ripple Metrics

The ripple peak was defined by the most negative peak of
the filtered ripple. The ripple duration was determined by the
lowest threshold (18 mV). The ripple rate was calculated within
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brain states in 30-s wide bins. The ripple peak frequency was
determined from the filtered LFP signal in the ripple fre-
quency band (110–180 Hz), and translated into phase by the
Hilbert transform. The frequency at the ripple peak was then
determined as the instantaneous change in the phase divided
by the sample duration (with a Gaussian neighbor event
smoothing; SD = 80 events).

Brain Temperature

Brain temperature wasmeasured using either a thermistor or
a thermocouple type k and recorded using the Intan system
analog amplifier at 20 kHz. Temperature data were down-
sampledfirst to 1,250Hz and to 1Hz for a subset of the analysis.

Brain State Scoring

Brain state scoring was performed as described in the study
by Watson et al. (41). In short, spectrograms were constructed
with a 1-s sliding 10-s window fast Fourier transform of 1,250
Hz data at log-spaced frequencies between 1 Hz and 100 Hz.
Three types of signals were used to score states: broadband
LFP, narrowband h frequency LFP and electromyogram (EMG).
For broadband LFP signal, principal component analysis was
applied to the Z-transformed (1–100 Hz) spectrogram. The first
principal component in all cases was based on power in the
low (32 Hz) frequencies. h Dominance was taken to be the ratio
of the power at 5–10 Hz and 2–16 Hz from the spectrogram.
EMG was extracted from the intracranially recorded signals by
detecting the zero time lag correlation coefficients (r) between
300 and 600 Hz filtered signals (using a Butterworth filter at
300–600 Hz with filter shoulders spanning to 275–625 Hz)
recorded at all sites. Next all states were inspected and curated
manually, and corrections were made when discrepancies
between automated scoring and user assessment occurred.

QUANTIFICATION AND STATISTICAL ANALYSIS

Electrophysiological recordings were conducted using an
Intan recording system: RHD2000 interface board with
Intan 64 channel preamplifiers sampled at 20 kHz (Intan
Technologies, Los Angeles, CA). See Table 1 for key resources.

Statistical Analyses

All statistical analyses were performed with MATLAB func-
tions or custom-made scripts. For rank order calculation, the
probability of participation and firing rate correlations, the
unit of analysis was single cells. Unless otherwise noted, for
all tests, nonparametric two-tailedWilcoxon rank-sum (equiv-
alent to Mann–Whitney U test), Wilcoxon signed-rank or
Kruskal–Wallis one-way analysis of variance were used. Due
to experimental design constraints, the experimenter was not
blind to themanipulation performed during the experiment.

RESULTS

Hippocampal Temperature Correlates with Brain States

Brain temperature showed wide fluctuations (�3�C) across
natural behaviors (Fig. 1, A–C). Waking during exercise had
the highest mean temperature (36.1±0.42�C, means ± SD),
whereas the lowest temperature level was observed during
sleep (nonREM 35.5±0.44�C; REM 35.4±0.42�C, means ± SD).
The wake-sleep state variation was described quantitatively by
the autocorrelogram of the temperature, corresponding to
approximately a 90-min cycle (Fig. 1D). The fastest brain tem-
perature changes occurred at the transitions between brain
states. The fastest change occurred at the onset of REM sleep
(Fig. 1E), with an average temperature increases of >0.3�C
within 2 min. After nonREM onset, brain temperature
decreased more gradually by > 0.1�C within a few minutes
(Fig. 1F), whereas wake onset showed a gradual increase (Fig.
1G). The short transient microarousals of nonREM sleep (41)
did not bring about an obvious change in temperature (Fig.
1H). These brain state changes were associated with character-
istic changes of the h-d ratio (h range: 5–12 Hz, d range: 0–4Hz)
andmovement (Fig. 1, E–H).

Hippocampal Ripple Metrics Correlate with Brain
Temperature in Freely Moving Rats

Next, we characterized various hippocampal ripple metrics
with the continuous brain temperature readings. Ripple

Table 1. Key resources

Resource Source Identifier/Location Description

Subjects
Rat: Long–Evans Charles River Cat No. Crl:LE 006 10 male adults

Data
Hippocampal data All authors https://buzsakilab.com/wp/database/ (42) Public data share with data from

our lab
Software
CellExplorer, NeuroScope2, and StateExplorer CellExplorer.org/(40) Cell-classification pipeline and

GUI built in MATLAB
MATLAB MathWorks https://www.mathworks.com/
Buzcode Buzsaki Lab https://github.com/buzsakilab/buzcode MATLAB analysis tools
FMA Toolbox Michaël Zugaro http://fmatoolbox.sourceforge.net/ MATLAB toolbox for Freely

Moving Animal (FMA)
Other
Silicon probe (5 � 12, 6 � 10) NeuroNexus https://neuronexus.com/
Silicon probe (4 � 16) Cambridge Neurotechhttps://www.cambridgeneurotech.com/
Wire electrodes California Fine Wire Tungsten 99.95% (100211), insulated with

Heavy Polyimide (HML - Green)
Intan RHD2000 Intan Technologies https://intantech.com/
Motive tracking system Optitrack http://optitrack.com/ 6 Flex3 camera system
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frequency and the rate of SPW-R events showed large varia-
tions both across wake-sleep states as well as within nonREM
and awake (Fig. 2, A–F). Within long sleep episodes, a positive
relationship between temperature, ripple frequency, and rate
of SPW-R occurrence was often visible. We observed a positive
correlation between the ripple peak frequency and brain tem-
perature (RnonREM = 0.60 and Rawake = 0.51; n = 15 sessions). A
negative correlation was observed between the ripple du-
ration and the brain temperature (RnonREM = �0.48 and
Rawake = �0.267; n = 15 sessions). The ripple occurrence rate
was correlated with brain temperature yet with larger variance
between sessions (RnonREM = 0.19 andRawake =�0.20; n = 15 ses-
sions). Quantification of these relationships showed a signifi-
cant difference between nonREM and waking for ripple
frequency and rate of SPW-Rs but not for their duration (Fig. 2,
G–I). We also calculate the temperature correlations of
these same measures, which remained unchanged between
nonREM and wake brain states.

Multivariable Linear Regression Model Prediction of
Ripple Frequency

To assess the potential contribution of other factors,
besides temperature, in describing the ripple frequency, we

applied a multivariable linear regression model, taking brain
temperature, the power spectrum slope, brain states (awake,
nonREM, REM, and micro arousals), SPW-R rate, and the h-d
ratio, which are changing on a similar timescale. Using a
leave-one-out approach, in which we compared the perform-
ance of a linear regression model based on all parameters
versus a model in which one of the parameters were left
out, we found that the brain temperature was the strong-
est contributor, significantly higher than the other varia-
bles as quantified by the root mean squared error (RMSE;
Fig. 3A).

To validate that the other measures were not covariating,
thus masking a potential hidden contribution to the regres-
sion model when leaving out a predictor, we also applied the
same analysis using single variables. Again, the best single
predictor was the brain temperature, with the lowest RMSE
(Fig. 3B).

Local Temperature Manipulation of the Hippocampus

In a further attempt to disentangle the hypothesized tem-
perature effect on ripples from potential hidden factors, we
varied the local temperature in the hippocampus. We built a
device that allowed for focal cooling and heating in freely
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Figure 1. Hippocampal temperature varies across brain states. Twenty-four hours recording of hippocampal activity and brain temperature in a chronically
implanted rat. A: time-power analysis of hippocampal local field potentials (LFPs) and brain temperature (orange line overlayed on spectrogram). Local field
potential from the CA1 region of the hippocampus was used to calculate the time-resolved fast Fourier transform-based power spectrum. Brain state classifi-
cation (41) is shown above the spectrum (awake, nonREM, micro arousals, and REM; green, blue, black, and red lines, respectively). Note steep temperature
rise during maze running (purple rectangle, �2.5 h). B: brain temperature varied �3�C–4�C within 24 h (black), with differing distributions across brain
states (awake, nonREM, micro arousals, and REM; green, blue, black, and red lines, respectively). C: distribution of brain temperatures across 18 recording
sessions in 8 animals. D: 5-min wide average auto-correlograms for each brain state (same color scale as in C). REM sleep did not allow for more than
�100-s:þ 100-s window due to their short duration. Inset: 1 h wide temperature auto-correlogram capturing the timescale of the temperature fluctuations
across states. E: REM onset-triggered brain temperature changes (top), h-d ratio and normalized EMG (bottom). F–H: same panels as in E for nonREM onset
(F), wake onset (G), and micro arousals (H). REM, rapid eye movement.
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moving rats (32, 35, 43). The temperature manipulation probe
consists of a silver wire (260 mm in diameter), air isolation,
and a polyimide tube (Fig. 4A). The back end of the silver wire
was coiled at the cold plate of a peltier device (1.2 mm by 1.9
mm), with an added passive copper heatsink. Cooling and
heating were achieved by directing current through the pelt-
ier device. A small temperature sensor (thermistor; 280 mm in
diameter) was attached at the tip of the cooling probe for con-
tinuous monitoring of the local brain temperature. The cool-
ing probe was implanted in the CA1 region together with a
silicon probe 1 mm apart (Fig. 4, A–D). By reversing the cur-
rent, we were able to induce both local heating and cooling
within the same recording session (Fig. 4, E–G). Local tem-
perature manipulation did not affect the sleep-wave cycle
or within-sleep state changes (Supplemental Fig. S1 and S2).
Local cooling (Dtemp = �2.8�C) significantly lowered the
ripple frequency on the ipsilateral side by �1.7 Hz (n = 12
sessions, P = 0.034, Wilcoxon signed rank test), whereas
heating (Dtemp = 3.7�C) increased ripple frequency by 1.5
Hz (Fig. 4H; n = 12 sessions, P = 0.012, Wilcoxon signed
rank test). Ripple duration and the occurrence of ripple
rates was not consistently affected by the local manipula-
tion of the temperature (Fig. 4, I and J). Although heating

increased ripple duration, cooling had no effect (Fig. 4I;
n = 12 cooling sessions, P = 0.016; n = 12 heating sessions;
P = 0.077). In contrast, cooling had no effect on SPW-R
rate, whereas heating had a small, although significant
increase (Fig. 4J; n = 12 cooling sessions, P = 0.30; n = 12
heating sessions; P = 0.027). Identical temperature manip-
ulation of the contralateral hippocampus was without
an effect (Supplemental Fig. S3; n = 5 cooling sessions,
P = 0.99, n = 8 heating sessions, P = 0.52, two-sample
Kolmogorov–Smirnov test).

DISCUSSION
We found a correlation between physiological brain tem-

perature variations and the frequency of hippocampal rip-
ples. In addition, we replicated the temperature effect by
local cooling and heating the hippocampal CA1 region. The
decrease and increase in ripple frequency upon cooling and
heating, respectively, suggest that brain temperature is the
main mechanism responsible for the ripple frequency differ-
ences between sleeping and waking animals. In contrast to
changes in ripple frequency, the rate of occurrence of SPW-
Rs and ripple duration were onlymarginally affected by local
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epochs from the session shown A–D, n = 6673 ripples in session. F: average ripple waveforms and wavelet maps for low (200 ripples) and high
(200 ripples) temperature epochs for all sessions. G–I: peak ripple frequency, mean duration, and mean rate of SPW-R occurrence during nonREM
and waking. Pairs of recordings from the same session are connected. J–L: correlation values between brain temperature and peak ripple fre-
quency, duration, and occurrence rate of SPW-R during nonREM and waking. Red highlighting lines in G, I, J, and L are values from the session
shown in A–E. REM, rapid eye movement; SPW-R, sharp wave-ripple complex. ���P < 0.001; n.s., not significant.
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temperature perturbation, suggesting that the control mech-
anisms of these parameters reside upstream from the CA1
region.

The effect of ambient temperature on the nervous system
and behavior is strong in cold-blooded animals (34). In homo-
iotherm birds andmammals, although body and brain temper-
ature are homeostatically regulated, there is still a systematic
and consistent variation in brain temperature, corresponding
to �3�C in birds, rodents, and humans (32, 44, 45) and even
much larger changes are present in hibernating animals (46).
During sustained nonREM sleep, temperature on the neocorti-
cal surface of mice decreases by �2�C (47), and recent work
indicates that a specific hypothalamic circuitry exists to delib-
erately cool the brain and simultaneously induce nonREM
sleep (48, 49). Our findings confirm previous observations in
the rodent regarding the behavior and brain-state dependence
of temperature variation (30, 33, 50, 51).

We extend these previous findings by quantifying the rela-
tionship between brain temperature and both SPW-R occur-
rence, duration, and ripple frequency. The hippocampal SPW-
R is a complex pattern of two independent but coupled events.
The extracellular sharp wave (SPW) is produced by large trans-
membrane currents in the apical dendrites of CA1 pyramidal
cell, which are triggered by the synchronous CA3 input target-
ing the mid stratum radiatum (20). The CA3 volley also excites
CA1 interneurons to protract the rate of pyramidal neuron
recruitment and their interaction induces a short-lived fast os-
cillation (110–160 Hz) detected in the local field potential (LFP)
as a “ripple” (4, 21–23). The twomechanisms can be dissociated
by separate perturbations of the CA1 and CA3 regions (52–54).
In our experiments, physiological decrease of brain tempera-
ture during nonREM sleep was correlated with both the rate of
SPW-Rs and ripple frequency, presumably because both the
CA1 region and regions upstream to it were cooled. In contrast,
artificial manipulation of local CA1 temperature affected ripple
frequency but had an inconsistent effect on SPW-R rate. We
assume that theminor change of SPW-R rate with temperature
increase was due to increasing the temperature also in the CA3
region. This is consistent with previous observations that
although the spatial temperature gradient is steep, neverthe-
less it can have a detectable effect a few millimeters from the
probe (32, 35). The same manipulation of the contralateral CA1

region was without an effect, further supporting the role of
local CA1 mechanisms for controlling ripple frequency (22).
The difference between ripple frequency in the waking and
sleeping rat was �5 Hz (9). In contrast, perturbation of local
CA1 temperature brought about only 2–4 Hz shifts. Thus, one
may suggest that other factors than cooling play an important
role in decreasing ripple frequency during nonREM sleep.
However, axons of fast firing CA1 basket cells, the presumed
substrate of ripple frequency generation (22, 55), reach the
entire fimbio-subicular extent of CA1 and up to 1mm along the
long axis (56). Thus, many cell bodies of basket cells residing
outside the effectively cooled local patch could have counter-
acted the frequency decrease brought about by the locally
cooled neurons. The primacy of temperature control of ripple
frequency is further supported by our statistical analyses,
which showed that the best single predictor of ripple frequency
was temperature, rather than power spectrum slope, brain
state, global firing rate, or h-d ratio of LFP.

How does temperature affect ripple frequency? The key de-
terminant of ripple frequency is the fast-reacting GABAA recep-
tors on the dendrites of basket cells (22). Previous work in vitro
has demonstrated that cooling the brain slice by only 2�, the
time constant of inhibitory postsynaptic currents in the hippo-
campus increased by about the same extent as induced by
GABAA receptor blockers and general anesthetics at sedative
doses (57). Conversely, drugs affecting brain temperature may
exert an effect on circuit operations and behavior mediated by
direct temperature changes. Auxiliary mechanisms could
involve the expression of the cold-inducible RNA-binding pro-
tein (CIRBP) and RNA-binding motif protein 3 genes (58).
However, the proteins encoded by these genes are likely
required for structural remodeling and their involvement in
the fast communication among interneurons has yet to be
uncovered. In summary, the physiological changes of brain
temperature between waking and nonREM sleep appears to be
the major mechanism for altering the frequency of hippocam-
pal ripples.

DATA AVAILABILITY
The dataset is publicly available from our data bank (42) via our

website: https://buzsakilab.com/wp/projects/entry/66407/.
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Figure 3. The brain temperature is the best
predictor of ripple frequency. A: leave-one-
out prediction of ripple frequency dynamics.
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for each held-out predictor. The held-out
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Figure 4. Local temperature manipulation affects ripple frequency. A and B: cooling probe and silicon probe or tungsten wires were implanted in the
CA1 region of the hippocampus of rats. Peltier element with heatsink is coupled to the silver wire and the hippocampus is cooled by thermal conduction.
C: intraoperative photograph showing the implanted cooling device (top) and the location of the probe implantation (bottom). Black marker lines are
approximately 1 mm apart. D: additional copper mesh heatsink is attached to the peltier element and placed inside the on-head Faraday cage. Custom
connectors (for peltier probe and thermistor) are highlighted on the left. Omnetics connector of the silicon probe and microdrive in black are also shown.
E: CA1 temperature during local temperature manipulation. Cooling intervals are shown by a blue line, and heating intervals by red line. Manipulation inter-
vals were defined using the graphical interface StateExplorer (Supplemental Fig. S1). Red/blue horizontal bars in insets are the true 5min heating/cooling inter-
vals applied with the peltier device. F: time course of local temperature change during cooling and heating. G: temperature changes during individual cooling
and heating sessions (cooling: P = 0.0005, Wilcoxon signed rank test, n = 12 sessions in 3 rats and heating: P = 0.0005, Wilcoxon signed rank test, n = 12 ses-
sions in 4 rats).H: peak frequency of ripples during cooling (left;Dfreq =�1.7 Hz, P = 0.034) and heating sessions (right; Dfreq = 1.5 Hz, P = 0.012). Solid lines rep-
resent sessions with significant within-session modulation (P < 0.01, Kolmogorov–Smirnov test), and dashed lines represent sessions with
nonsignificant modulation (P > 0.05, Kolmogorov–Smirnov test). I: ripple duration (cooling: Dduration = 1.6 ms, P = 0.016; heating: Dduration = �1.6 ms,
P = 0.077). J: rate of ripple occurrence (cooling: Drate = �0.012 Hz, P = 0.30; heating: D rate = 0.02 Hz, P = 0.027; same sessions shown in G–J;
Wilcoxon signed rank test applied in all stats). �P < 0.05, ���P < 0.001; n.s., not significant.
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