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Selection of experience for memory by hippocampal
sharp wave ripples
Wannan Yang1,3, Chen Sun2, Roman Huszár1,3, Thomas Hainmueller1,4, Kirill Kiselev3, György Buzsáki1,3*

Experiences need to be tagged during learning for further consolidation. However, neurophysiological
mechanisms that select experiences for lasting memory are not known. By combining large-scale neural
recordings in mice with dimensionality reduction techniques, we observed that successive maze
traversals were tracked by continuously drifting populations of neurons, providing neuronal signatures
of both places visited and events encountered. When the brain state changed during reward
consumption, sharp wave ripples (SPW-Rs) occurred on some trials, and their specific spike content
decoded the trial blocks that surrounded them. During postexperience sleep, SPW-Rs continued to
replay those trial blocks that were reactivated most frequently during waking SPW-Rs. Replay content of
awake SPW-Rs may thus provide a neurophysiological tagging mechanism to select aspects of
experience that are preserved and consolidated for future use.

S
ome episodic events experienced during
the day are further consolidated during
sleep, whereas others are discarded (1).
Remembering events depends on pro-
cesses that occur both immediately after

encoding and thereafter during sleep (2–4).
However, no unified solutions have yet emerged
for brain mechanisms that assign which ex-
periences are selected for storage and which
are eliminated. A molecular candidate for syn-
aptic tagging has been proposed (5) as an eli-
gibility trace (6), but no neurophysiological
mechanism has been identified for online se-
lection of experience. Awake sharp wave ripples
(SPW-Rs) in the hippocampal system (3, 7–8)
are a potential candidate for selecting partic-
ular aspects of experience for future use (9). In
support of this hypothesis, salient features of
the experience, such as novelty and rewardmag-
nitude, facilitate replay of multiple aspects
of waking experience and enhance memory
(2, 9, 10). To hold confounding external bias-
ing factors (such as reward or novelty) constant
and identify whether SPW-Rs assign credit to
particular events, we examined which events
within a session were selected by waking SPW-
Rs and continued to be replayed repeatedly
during sleep SPW-Rs. Recordings taken from
many hundreds of neurons simultaneously
in the dorsal CA1 region of the hippocampus
(n = 4469 cells from six mice) with dual-side
silicon probes (Fig. 1A) (11) and the application
of advanced analysis tools allowed us to visual-
ize and decode perpetually changing spike
contents of successive trials during experience
and relate them to spike sequences during
both awake and sleep SPW-Rs.

To extract the sequential structure embed-
ded in the spike data, we used sequence non-
negative matrix factorization (seqNMF) (12).
seqNMF identified robust patterns thatmatched
the behavioral events of mice in the figure-
eight maze (Fig. 1, B to D, and fig. S1). To fur-
ther examine the differences in the sequences
between different events, we used uniform
manifold approximation and projection (UMAP)
to embed the same high-dimensional data in
a low-dimensional space (13). As expected,
qualitative UMAP visualization (Fig. 1E) re-
vealed that population activity of the hippo-
campus corresponded to a latent space that
topologically resembled the physical environ-
ment (14, 15). Notably, a prominent progres-
sion of states that corresponded to trial
sequences was observed after color-labeling
themanifoldwith trial block numbers (Fig. 1F)
(16). This observation was consistent across
different maze types and rodent species (fig.
S2) (17).

Within-session temporal evolution of neuronal
population activity

To quantify the trial sequence information
(18) present in the state space, we tested if trial
block membership can be accurately decoded
from the population activity (13, 19). Succes-
sive five trials composed a trial block, and a
specific label was assigned to each trial block
(Fig. 1, G and H). Decoding was performed
using a k-nearest neighbor (kNN) decoder,
followed by 10-fold cross-validation in the
original high-dimensional space (fig. S7B)
(materials and methods). Trial block member-
ship could be accurately decoded from the
original high-dimensional space (Fig. 1I) as
well as from the low-dimensional UMAP em-
bedding (fig. S3, C and E). These results were
further confirmed by using principal compo-
nent analysis (PCA) for dimensionality reduc-
tion or by using Bayesian decoding (Fig. 1J and
fig. S3), although these classical methods did

not generate intuitive visualization for the
initial hypothesis generation process. Nota-
bly, we confirmed that UMAP embedding in
the low-dimensional space preserved the trial
block membership of the data compared with
that in the original high-dimensional space,
yielding consistent trial-decoding results be-
tween the low- and high-dimensional spaces
(fig. S4). Nevertheless, the main summary
statistics (across the entire dataset) through-
out the paper were performed in the original
high-dimensional space.

Intertrial variation of population activity
is not random

To probe the contribution of the individual
neurons to the aforementioned neuronal pop-
ulation features, we first plotted the tuning
curves of individual neurons across trials. We
found diverse patterns of intertrial variability:
within-place field rate remapping (fig. S6, A
and B) (20), place fields emerging on later
trials (bottom, Fig. 2A) (21), and shifting place
fields across trials (top, Fig. 2A, and fig. S6C)
(22–24). In principle, decodability of trial block
membership could be explained by either sto-
chastic or structured variation across trials.
To identify the source of variability, we built a
model that generated stochastic fluctuation
in firing rate across trials. Each simulated
cell’s spiking activity was generated through
a Poisson process based on the tuning curve
of real neurons (Fig. 2B) (materials and meth-
ods). We passed the simulated spike trains
through the same dimensionality-reduction
pipeline as we did for the real data. The mani-
fold of the simulated data also reflected the
topology of the maze (Fig. 2C). By contrast,
trial block identity information across trials
vanished (Fig. 2, D and E). As an alternative
to the standard 10-fold cross-validation meth-
od (Fig. 1I and fig. S7, B and D), we imple-
mented a targeted validationmethod (a “leave
one trial out” procedure) that was expected to
yield high decoding accuracy only if the state
space of the data changed in a structured way,
evolving along one axis according to the se-
quence of trial events. Because the training set
did not contain any data that shared the trial
block membership with the test set, the test
data could decode only to the next closest trial
block (not the same trial block) in the state
space (fig. S7, A and C). Indeed, we observed
that only the real data were decoded correctly
to the preceding or succeeding trials, occupy-
ing the space immediately next to the diagonal
of the confusion matrix (1.20 and 7.84 mean
error for real and simulated data for one ex-
ample session) (Fig. 2F and fig. S7, C and E to
G). The trial decoding accuracy of the real data
was significantly higher than that of the sim-
ulated or trial-shuffled data (P < 10−10; 1.51,
4.07, and 5.34 mean error for real, simulated,
and shuffled data, respectively) (Fig. 2G and
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fig. S8). These findings indicate that inter-
trial variation of population activity (drift)
cannot be captured by random fluctuations
at the single neuron level. By using four dif-
ferent decoding methods, we confirmed that
the systematic trial-dependent variation of
the neuronal population activity could not

be explained by electrode drift (figs. S5, S6,
and S9) (25).
Both place cells (PC) and nonplace cells

(NPC) contributed to trial block membership
decoding (Fig. 2H) [mean decoding errors were
0.1, 0.42, 0.49, 0.53, and 0.59 for all cells, PCs,
NPCs, and the size-matched controls of PCs

and NPCs, respectively (Fig. 2I)]. The neural
manifolds of different trials were aligned better
with place cells than with nonplace cells. De-
coding accuracy deteriorated rapidly when
downsampled to <100 neurons in a session, in-
dicating that trial block identity is encoded in
the population (Fig. 2J and figs. S10 and S11).
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Fig. 1. Trial block identity can be decoded from the distinct temporal
evolution of neuronal population activity. (A) Illustration of two (out of four)
shanks of the dual-sided probe. (B) The figure-eight maze task, where mice
alternated between left and right arms for water reward (blue droplets). The
mouse’s trajectory along maze corridors is color coded by its linearized position.
(C) Trials 1 (right arm traversal) and 2 (left arm traversal) during the figure-eight
maze task. (Top) The linearized position of the mouse. Red, right traversal;
green, left traversal. (Bottom) A raster plot of 422 pyramidal cells that were
simultaneously recorded from the right dorsal CA1 region of a mouse’s
hippocampus, sorted by seqNMF, and color coded according to the linearized
position. This follows the same color scheme as in (B). (D) Trials 3 to 31
[of 70 trials in total (fig. S1)] of an example session. E, error trials. (E) (Left)
Running trajectory of a mouse in the figure-eight maze. (Right) UMAP embedding
of population activity. Each point corresponds to the low-dimensional

representation of one-binned spiking data. Both are colored according to the
mouse’s position, as in (B). (F) The same session as (E), but the running
trajectory and neural manifold are colored by trial block number [see color
key in (H)]. (G) Neural manifold of the same session as in (E) and (F) made by
using semisupervised UMAP trained on blocks of five trials. The manifold is
colored by linearized position. (H) Same as (G), but the neural manifold is
colored by trial block number. (I) Confusion matrix of trial block decoding from
the original high-dimensional space [same session as (A) to (H)]. (J) Trial
block identity decoding errors from across all sessions using UMAP, PCA,
Bayesian decoding, decoding from original high-dimensional space with Euclidean
distance (EUD), and cosine similarity (COS) as distance metrics. Each dot in
the violin plot indicates one session, pooled across n = 26 sessions from
six animals. Decoding error was measured in units of trial block in which five
trials were binned to one trial block.
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Waking SPW-Rs replay current experience
Place and trial sequence encoding is associated
with theta frequency (6 to 9 Hz) oscillations
(“theta state”) (26) as animals actively navigate
in an environment. When animals stop con-
suming the water reward, theta activity gives
way to synchronous population events, SPW-
Rs (Fig. 3, A and B). Because spike sequences
within SPW-Rs are known to replay place field
sequences (27, 28), we asked whether trial
block identity could also be decoded in replay
events. A candidate SPW-R event was classi-
fied as a significant replay if both its distance
to manifold and trajectory length were sig-
nificantly shorter than those of shuffled dis-
tributions (Fig. 3, C and D, and figs. S12 to
S14) (materials and methods). The majority
of SPW-Rs occurred in the reward area (fig.

S15A), and about 33% of the awake SPW-Rs
were significant replays (Fig. 3E). From the
original high-dimensional space, we decoded
not only the spatial trajectory but also the trial
block identity of the significant replay events.
We validated the decoding results using four
different methods, including decoding from
the original high-dimensional space with dif-
ferent distance metrics and decoding from
the low-dimensional space with PCA and
UMAP. Differentmethods yielded consistent
decoding results (Fig. 3, F to G, and figs. S16
and S18, A to D). The within-event coherence
of trial replay was high (different time bins
within the same events coherently decoded to
the same trial block) but decreased rapidly
as we downsampled the number of cells in-
cluded for decoding (fig. S18, E to G). Next,

we examined whether the SPW-Rs replayed the
past, future, or current trial block. The spike
content of SPW-Rs decoded most reliably to
the present trial block (Fig. 3H) (4, 28–30).
The strongest predictor of the trial block dis-
tribution pattern for maze replay was the im-
mobility time (fig. S19B).

Postexperience sleep SPW-Rs replay events
selected by waking SPW-Rs

To examine the relationship between awake
SPW-Rs and those during postexperience sleep,
we compared the population activity of awake
SPW-Rs in the maze with that during postex-
perience sleep in the home cage (Fig. 4, A to E).
The distribution patterns of trial block identity
during postexperience sleep were highly cor-
related with that during maze replay, but not
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Fig. 2. Contribution of single cell and subpopulation of cells to the trial block
identity coding. (A) Trial-by-trial firing rate of an example neuron during left-arm
(top) and right-arm trials (bottom) in the figure-eight maze. Color indicates the trial
block number. (B) Raster plot of an example neuron (top) and a simulated
neuron (bottom), generated from a Poisson process model based on the across-trial
mean firing rate of the real neuron (materials and methods). (C) (Top) UMAP
manifold generated from the population activity of all the neurons in one example
session. (Bottom) UMAP embedding from the simulated population activity. Both
are colored by linearized position. (D) Same as (C) but colored by the trial block
number [see color key in (E)]. (E) Neural manifold of the same session as (C)
and (D) made by using the semisupervised UMAP trained on blocks of five trials.
(F) Confusion matrix of trial block decoding results for the real (top) and simulated
population (bottom). For decoding results from other decodingmethods, see fig. S7, E to
G. (G) Trial block decoding error of real (purple) and simulated (green) data across all

sessions (decoded from the original high-dimensional space) (***P < 10−10, unpaired
t test; n = 26 sessions from six animals). The dashed line indicates the chance level
from trial-shuffled data (fig. S8). (H) Neural manifold generated from place cells (left)
and nonplace cells (right) from the same session as (A) to (F) by using semisupervised
UMAP trained on blocks of five trials. (I) Trial block decoding error of all cells (red),
place cells (PC), and its size-matched control from all cells (SM-PC, purple), as well as
nonplace cells (NPC) and their size-matched control (SM_NPC, blue). Decoding
error was measured in units of trial block in which successive five trials were binned to
one trial block. (N.S., not significant; unpaired t test; n = 26 sessions from six animals.)
(J) Decoding error when downsampling the cells in the example session to
subsamples of varying cell numbers (from 50 to 450 cells). Error bar indicates the
standard error of the mean (SE) across 1000 subsamples. Decoding error was
measured in units of trial block in which successive five trials were binned to one
trial block). The red line shows the fitted exponential curve.
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with preexperience sleep replay (R = 0.86, P <
10−36 for correlation between postexperience
sleep replay and maze replay) (Fig. 4, F to H,
and figs. S17 and S19A). We compared which
factor best explained the trial block distribu-
tion pattern during postexperience sleep by
using a mixed-effect linear regression anal-
ysis. All decodingmethods consistently showed
that the strongest predictor for the trial block
distribution pattern during postexperience
sleep was that of the SPW-R replay in the
maze (P < 10−26, P = 0.06, P < 10−4, P = 0.89,
and P = 0.87 for in-maze replay, theta power,
theta cycle count, presleep replay, and trial-
shuffled data, respectively) (Fig. 4I and fig.
S19C) (32).
We examined whether replays of the left

versus right arms during waking and post-

sleep SPW-Rs were correlated, exploiting the
natural variability in the replay distribution
patterns across different arms in different ses-
sions (Fig. 4J and fig. S15B). The correlation of
maze-arm replays between wake and sleep
SPW-Rs was significantly higher than in the
shuffled data (Fig. 4K). The difference in replay
proportion across left and right arms could not
be explained by the difference in the decod-
ability (measured by spatial information) or the
difference in coverage (measured by number of
visits) between the two arms (fig. S20).

Waking SPW-Rs weigh and select the
experience, and sleep SPW-Rs consolidate it

Exploration of the environment is a regular al-
ternation between ambulation and rest phases,
enabling brain state changes (33–35), and re-

playing aspects of experience during SPW-Rs
(27, 28, 30). We hypothesize that waking SPW-Rs
represent a natural credit assignment (tag-
ging) mechanism of experiences (3, 7–9). They
tag selected neuronal patterns, possibly by
comparing them to previous experience and
relevance to the animal, and the tagged pat-
terns are reactivated numerous times during
SPW-Rs of postexperience sleep to consoli-
date the selected experience and combine it
with the existing knowledge base of the brain
(4, 29, 36, 37). Waking SPW-Rs may trigger
molecular mechanisms to induce long-term
synaptic changes (5, 38). At the functional
level, they may create a brain state–dependent
attractor. Consequently, when the hippocam-
pal network returns to a similar brain state,
suchasnon–rapid eyemovement (NREM) sleep,
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Fig. 3. Maze SPW-Rs replay of trial block identity. (A) Spiking activity of an
example trial in the figure-eight maze. (Top) Linearized position of the mouse.
(Bottom) Raster plot of neuronal spiking activity sorted by seqNMF. Purple stars,
SPW-Rs. (B) Zoomed-in display of a replay event. (Top) Local field potential (LFP)
filtered in the ripple band. (Bottom) Raster plot of neurons belonging to a sequence
factor with significant reactivation strength (materials and methods). Neurons were
sorted in the same order as in (A). (C) All waking SPW-R events (red) in this
example session were embedded with the neural manifold data during navigation
(light gray), and the noise cloud consisted of negative samples (dark gray). Two
clusters of SPW-R replay events were distinguished: off- and on-manifold events
(materials and methods) (figs. S12 and S13). (D) SPW-R replays were classified as
significant if they were (1) close to the maze manifold and (2) their trajectory length
along the manifold was short in comparison to shuffled data. (E) Percentage of
significant replays in the maze (number of significant maze replay events/total

number of maze SPW-R events) compared with shuffled data. (***P < 10−4,
unpaired t test; n = 26 sessions from six animals). (F) UMAP embedding and the
decoded position for the same event as in (B). (Left) The neural manifold during
maze running (“position manifold,” colored by position). (Right) The position content
of each replay time bin was decoded to a position bin along the maze trajectory
according to the position label of its nearest neighbor on the manifold. The black
triangle represents the physical location of the mouse when the replay event took
place, and the pink-purple dots represent the neural embedding of seven successive
time bins of a SPW-R replay event (each time bin was 20 ms). (G) (Left) The
same event was embedded with the “trial manifold” and was colored by trial
block number. (Right) Trial content of each replay time bin was decoded as the
trial block label of its nearest neighbor on the manifold (each trial block
corresponds to five trials). (H) Distribution of differences between the actual trial
block of SPW-Rs events and their decoded trial block identity across all sessions.
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it continues generating patterns set forth by
the waking SPW-R attractor.
Previous observations support this scenario.

Cues relevant to future behavioral success can
bias the neuronal trajectories of SPW-Rs (39–41).
Perturbation of SPW-Rs prevents place field
and experience stabilization (7, 8, 42–48). In
humans, items for which electrophysiological
brain patterns are not reactivated during non-
REMsleep are forgotten. Replay can occur after
a single experience and the number of SPW-R
after learning predicts subsequent memory
performance (3, 31, 46, 49–51).

Salient features of the experience, such as
novelty (9, 52, 53), repetition (9), and reward
(10), increase the incidence of SPW-Rs and re-
plays (54, 55). In our experiments, we could
exclude differences in external factors that
could shape sleep replay patterns by demon-
strating distinctly changing neuronal popula-
tion activity patterns within the same maze
and session. Selective tagging of trial events by
waking SPW-Rs could occur because the per-
petually evolving population activity patterns
during the theta state serve as a temporal scaf-
fold to organize experiences (56) and differen-

tiate successive events. The sequence of theta
state–dependent turnover of neuronal assem-
blies, their selection bywaking SPW-Rs, and the
numerous repetitions during sleep SPW-Rsmay
represent a hippocampal network mechanism
of selective episodic memory consolidation.
Our observations suggest that rewards pro-

vide an affordance for shifting brain states
and that the waking SPW-R serves as a neuro-
physiological mechanism for memory selection
(49, 56). These findings establish a neurophys-
iological framework formultiple domains of sys-
tems neuroscience, including credit assignment
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Fig. 4. Replay of trial block identity and maze segments during sleep can
be predicted from waking SPW-Rs in the maze. (A) Spiking activity in the
figure-eight maze. (Top) Linearized position of the mouse. (Bottom) Raster
plot of neuronal spikes, sorted by seqNMF. Purple stars represent SPW-Rs.
(B) Zoomed-in display of an awake replay event in the maze. The raster plot
contains neurons belonging to the sequence factor with significant reactivation
strength (materials and methods). Neurons were sorted in the same order
as in (A). (C) Decoded position and trial block identity of successive 20-ms bins
(one to six bins) of the same SPW-R replay event in (B). The black triangle
represents the physical location of the mouse when the replay event took place.
(D) Raster plot of a SPW-R replay event during sleep in the home cage.
(E) Decoded position and trial block identity of successive 20-ms bins of the
same SPW-R replay event in panel (D). (A), (B), and (D) were colored according
to the linearized position of the mouse; (C) and (E) were colored according to
trial block number. (F) Percentage of significant replays during pre- and
postexperience sleep (presleep and postsleep, respectively) in the home cage
compared with shuffled data. (Presleep versus postsleep, ***P < 10−5; postsleep
versus shuffled data, ***P < 10−8; presleep versus shuffled data, ***P < 10−8;

unpaired t test; n = 26 sessions from six animals). (G) Distribution of the trial blocks
decoded from the population spike content of SPW-Rs in an example session. (Top)
Maze and postsleep replay trial block distribution pattern. (Bottom) Maze and
presleep replay trial block distribution pattern. (H) Correlation between trial block
distributions across trial blocks during maze and postsleep SPW-Rs replay (decoded
from the original high-dimensional space; Pearson correlation coefficient, R = 0.86;
P < 3.1 × 10−34; n = 16 sessions from five animals) (results from all four different
decoding methods, see fig. S18 ). (I) The predictive relationship between trial block
distribution patterns of postsleep SPW-Rs and other candidate variables, including
the trial block distribution patterns of theta cycle, theta power, presleep, and trial-
shuffled data (***P < 10−23 for awake replay; ***P < 10−3 for theta cycle number;
the relative predictive power of a given metric was considered nonsignificant when
it overlapped with zero; n = 16 sessions from five animals) (for results from all four
different decodingmethods, see fig. S18). (J) Proportion of maze segment replays (left
arm and right arm) during awake and postexperience sleep SPW-Rs in an example
session. (K) Proportion of sessions with same rank order between maze segments
during awake and post-maze sleep SPW-R replays, compared with shuffle data.
(*P < 0.05, chi-square test; n = 13 sessions from five animals).

RESEARCH | RESEARCH ARTICLE

Yang et al., Science 383, 1478–1483 (2024) 29 March 2024 5 of 6

D
ow

nloaded from
 https://w

w
w

.science.org at N
ew

 Y
ork U

niversity on M
arch 28, 2024



(28, 37), representational drift (57), “event
remapping” (18), time coding (16, 58–60),
andmemory editing (61). Our work also links
a shared principle of memory processing im-
portant for both biological and artificial learn-
ing. In particular, it relates to importance
sampling (62, 63) in machine learning, which
enables faster acquisition (64) andmore robust
generalization (65).
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